若實(shí)數(shù)a,b,c滿足a2+b2+c2=1,則3ab-3bc+2c2的最大值為
 
考點(diǎn):柯西不等式在函數(shù)極值中的應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:不妨考慮c,當(dāng)c=0時(shí),運(yùn)用重要不等式a2+b2≥2ab,求得最大值;再由當(dāng)c≠0時(shí),3ab-3bc+2c2=
3ab-3bc+2c2
a2+b2+c2
,
分子分母同除以c2,設(shè)x=
a
c
,y=
b
c
,再整理成二次方程,由于x為實(shí)數(shù),運(yùn)用判別式大于等于0,再由y為實(shí)數(shù),判別式小于等于0,即可解得所求的范圍,進(jìn)而得到最大值.
解答: 解:不妨考慮c,當(dāng)c=0時(shí),有3ab-3bc+2c2=3ab≤
3(a2+b2)
2
=
3
2
,
當(dāng)c≠0時(shí),3ab-3bc+2c2=
3ab-3bc+2c2
a2+b2+c2
=
3•
a
c
b
c
-3•
b
c
+2
(
a
c
)2+(
b
c
)2+1
,
設(shè)x=
a
c
,y=
b
c
,則可令M=3ab-3bc+2c2=
3xy-3y+2
x2+y2+1
,
即有Mx2-3xy+My2+M+3y-2=0,
由于x為實(shí)數(shù),則有判別式△1=9y2-4M(My2+M+3y-2)≥0,
即有(9-4M2)y2-12My-4M(M-2)≥0,
由于y為實(shí)數(shù),則△2=144M2+16M(9-4M2)(M-2)≤0,
即有M(M-3)(2M2+2M-3)≤0,
由于求M的最大值,則M>0,則M≤3.
故答案為:3.
點(diǎn)評:本題考查重要不等式的運(yùn)用:求最值,考查換元法轉(zhuǎn)化為二次函數(shù)和二次方程有實(shí)根的條件,考查不等式的解法,屬于壓軸題和易錯(cuò)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈(0,6),b∈(0,6).
(Ⅰ)求|a-b|≤1的概率;
(Ⅱ)以a,b作為直角三角形兩直角邊的邊長,則斜邊長小于6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x,y),
b
=(x-2,1),設(shè)集合P={x|
a
b
},Q={x||
b
|<
5
},當(dāng)x∈P∩Q時(shí),y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*).若S3,S9,S6成等差數(shù)列,則 
a8
a2+a5
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角函數(shù)f(x)=Asin(ωx+φ)+b同時(shí)滿足以下三個(gè)條件:
①定義域?yàn)镽;
②對任意實(shí)數(shù)x都有f(x)≤f(3);
③f(x+2)=
1
2
+
f(x)-f2(x)
,
則f(x)的單調(diào)區(qū)間為( 。
A、[4k-1,4k+3],k∈Z
B、[4k+1,4k+3],k∈Z
C、[8k-2,8k+2],k∈Z
D、[8k+2,8k+6],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓O:x2+y2=4與y軸正半軸交于點(diǎn)P,A(-1,0),B(1,0),直線l與圓O切于點(diǎn)S(l不垂直于x軸),拋物線過A、B兩點(diǎn)且以l為準(zhǔn)線.
(1)當(dāng)點(diǎn)S在圓周上運(yùn)動(dòng)時(shí),試求拋物線的焦點(diǎn)Q的軌跡方程;
(2)設(shè)M,N是(1)中的點(diǎn)Q的軌跡上除與y軸兩個(gè)交點(diǎn)外的不同兩點(diǎn),且
PM
=t
PN
(t∈R),問:△MON(O為坐標(biāo)原點(diǎn))的面積是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明結(jié)論“?x0∈R”使得P(x0)成立,應(yīng)假設(shè)( 。
A、?x0∈R,使得P(x0)不成立
B、?x∈R,P(x)均成立
C、?x∈R,P(x)均不成立
D、不存在x0∈R,使得P(x0)不成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義運(yùn)算A
 
m
x
=x(x-1)(x-2)…(x-m+1),其中x∈R,m∈N,已知函數(shù)f(x)=aA
 
3
x+1
-12A
 
2
x
+1,(a∈R,且a≠0)在x=1處取得極值,且方程f(x)=6x-
16
x
在區(qū)間(m,m+1)(m∈N*)內(nèi)有且只有兩兩不相等的實(shí)數(shù)根,則(1)實(shí)數(shù)a的值為
 
;(2)正整數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是偶函數(shù),在[0,+∞)遞增,f(x+1)=f(
x+1
x
)的所有實(shí)根之和.

查看答案和解析>>

同步練習(xí)冊答案