某廠有許多形狀為直角梯形的鐵皮邊角料,如圖,上底邊長(zhǎng)為8,下底邊長(zhǎng)為24,高為20,為降低消耗,開(kāi)源節(jié)流,現(xiàn)在從這此邊角料上截取矩形鐵片(如圖中陰影部分)備用,則截取的矩形面積最大值為( 。
A、190B、180
C、170D、160
考點(diǎn):基本不等式在最值問(wèn)題中的應(yīng)用
專(zhuān)題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:由直角三角形相似得
24-y
24-8
=
x
20
,得x=
5
4
•(24-y),化簡(jiǎn)矩形面積S=xy的解析式為=-
5
4
(y-12)2+180,再利用二次函數(shù)的性質(zhì)求出S的最大值,以及取得最大值時(shí)x、y的值.
解答: 解:由直角三角形相似得
24-y
24-8
=
x
20
,得x=
5
4
•(24-y),
∴矩形面積S=xy=-
5
4
(y-12)2+180,
∴當(dāng)y=12時(shí),S有最大值180.
故選:B.
點(diǎn)評(píng):本題主要考查三角形中的幾何計(jì)算、二次函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率
1
2
,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為
10
,過(guò)左焦點(diǎn)作直線OP的垂線l交橢圓C于A,B兩點(diǎn).
(1)求橢圓C的方程;
(2)求△ABP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某同學(xué)參加科普知識(shí)競(jìng)賽,需回答4個(gè)問(wèn)題,每一道題能否正確回答互相獨(dú)立的,且回答正確的概率是
3
4
,若回答錯(cuò)誤的題數(shù)為ξ,則E(ξ)=
 
,D(ξ)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)正方體的棱長(zhǎng)為2,一個(gè)球內(nèi)切于該正方體,那么這個(gè)球的體積是(  )
A、
6
π
B、
32
3
π
C、
8
3
π
D、
4
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在可行域內(nèi)任取一點(diǎn),如框圖所示進(jìn)行操作,則能輸出數(shù)對(duì)(x,y)的概率是( 。
A、
1
4
B、
π
4
C、
π
8
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a為實(shí)數(shù),兩直線l1:ax+y+1=0,l2:x+y-a=0相交于一點(diǎn),求證:交點(diǎn)不可能在第一象限及x軸上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐O-ABC,∠BOC=90°.OA⊥平面BOC,AB=
10
,BC=
13
,AC=
5
,則此三棱錐外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,-π<φ<π )的一個(gè)最高點(diǎn)坐標(biāo)為(
π
12
,3),其圖象與x軸的相鄰兩個(gè)交點(diǎn)的距離為
π
2

(1)求f(x)的最小正周期及解析式;
(2)若x∈[-
π
2
,
π
12
),求函數(shù)g(x)=f(x+
π
6
)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x0是函數(shù)f(x)=(
1
2
x+
1
1+x
的一個(gè)零點(diǎn),若x1∈(-∞,x0),x2∈(x0,-1),則( 。
A、f(x1)<0,f(x2)<0
B、f(x1)<0,f(x2)>0
C、f(x1)>0,f(x2)<0
D、f(x1)>0,f(x2)>0

查看答案和解析>>

同步練習(xí)冊(cè)答案