【題目】如圖所示,在棱長為4的正方體中,點M是正方體表面上一動點,則下列說法正確的個數(shù)為(

①若點M在平面ABCD內(nèi)運動時總滿足,則點M在平面ABCD內(nèi)的軌跡是圓的一部分;

②在平面ABCD內(nèi)作邊長為1的小正方形EFGA,點M滿足在平面ABCD內(nèi)運動,且到平面的距離等于到點F的距離,則M在平面ABCD內(nèi)的軌跡是拋物線的一部分;

③已知點N是棱CD的中點,若點M在平面ABCD內(nèi)運動,且平面,則點M在平面內(nèi)的軌跡是線段;

④已知點PQ分別是,的中點,點M為正方體表面上一點,若MPCQ垂直,則點M所構(gòu)成的軌跡的周長為.

A.1B.2C.3D.4

【答案】D

【解析】

對于①,結(jié)合圓錐的性質(zhì),可判斷其正確;對于②,結(jié)合拋物線的定義,可知其正確;對于③,取AB的中點I,BC的中點O,易證平面平面,可知當(dāng)M在線段IO上時,滿足題意;對于④,只需過點P作直線CQ的垂面即可,垂面與正方體表面的交線即為動點M的軌跡,求出周長,即可判斷④正確.

對于①,因為滿足條件的動點M是以為軸線,以為母線的圓錐與平面ABCD的交線,即圓的一部分,故①是正確的;

對于②,依題意知點M到點F的距離與到直線AB的距離相等,所以M的軌跡是以F為焦點,AB為準線的拋物線,故②是正確的;

對于,如圖(1),取AB的中點I,BC的中點O,顯然,從而可以證明平面平面,當(dāng)M在線段IO上時,均有平面,即動點M的軌跡是線段IO,故是正確的;

對于④,如圖(2),依題意,只需過點P作直線CQ的垂面即可,垂面與正方體表面的交線即為動點M的軌跡.分別取,的中點R,S,由,知,易知,又,,所以平面ABRS,過P作平面ABRS的平行平面,點M的軌跡為四邊形,其周長與四邊形ABRS的周長相等,所以點M所構(gòu)成的軌跡的周長為,故④是正確的.

因此說法正確的有4.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是圓的直徑,點是圓上異于,的點,直線平面,,分別是,的中點.

(Ⅰ)記平面與平面的交線為,試判斷直線與平面的位置關(guān)系,并加以證明;

(Ⅱ)設(shè),求二面角大小的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,是菱形,,平面,,.

1)求證:平面平面;

2)求平面與平面構(gòu)成的二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)若二項式的展開式中存在常數(shù)項,則的最小值為______

2)從6名志愿者中選出4人,分別參加兩項公益活動,每項活動至少1人,則不同安排方案的種數(shù)為____.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線交于P,Q兩點,且的面積為16O為坐標(biāo)原點).

1)求C的方程.

2)直線l經(jīng)過C的焦點Fl不與x軸垂直;lC交于A,B兩點,若線段AB的垂直平分線與x軸交于點D,試問在x軸上是否存在點E,使為定值?若存在,求該定值及E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在棱長為4的正方體中,點M是正方體表面上一動點,則下列說法正確的個數(shù)為(

①若點M在平面ABCD內(nèi)運動時總滿足,則點M在平面ABCD內(nèi)的軌跡是圓的一部分;

②在平面ABCD內(nèi)作邊長為1的小正方形EFGA,點M滿足在平面ABCD內(nèi)運動,且到平面的距離等于到點F的距離,則M在平面ABCD內(nèi)的軌跡是拋物線的一部分;

③已知點N是棱CD的中點,若點M在平面ABCD內(nèi)運動,且平面,則點M在平面內(nèi)的軌跡是線段;

④已知點P、Q分別是,的中點,點M為正方體表面上一點,若MPCQ垂直,則點M所構(gòu)成的軌跡的周長為.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的右焦點與拋物線的焦點重合,曲線相交于點

1)求橢圓的方程;

2)過右焦點的直線(與軸不重合)與橢圓交于,兩點,線段的中點,連接并延長交橢圓點(為坐標(biāo)原點),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點, 上異于,的點, .

1)證明:平面平面;

2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1)求曲線的普通方程及直線的直角坐標(biāo)方程;

2)求曲線上的點到直線的距離的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案