精英家教網 > 高中數學 > 題目詳情
橢圓
x2
a2
+y2=1的一個焦點在拋物線y2=4x的準線上,則該橢圓的離心率為(  )
A.
1
2
B.
2
2
C.
1
3
D.
3
3
由拋物線y2=4x的方程得準線方程為x=-1,
又橢圓
x2
a2
+y2=1的焦點為(±c,0).
∵橢圓
x2
a2
+y2=1的一個焦點在拋物線y2=4x的準線上,∴-c=-1,得到c=1.
∴a2=b2+c2=1+1=2,解得a=
2

e=
c
a
=
1
2
=
2
2

故選B.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若橢圓
x2
a2
+y2=1(a>0)的一條準線經過拋物線y2=-8x的焦點,則該橢圓的離心率為(  )
A、
1
2
B、
1
3
C、
3
2
D、
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設P是橢圓
x2a2
+y2=1   (a>1)
短軸的一個端點,Q為橢圓上一個動點,求|PQ|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x2
a2
+y2=1
(a>0)的離心率為
3
2

(1)求橢圓的方程;
(2)設直線l與橢圓相交于不同的兩點A、B,已知點A的坐標為(-a,0),若|AB|=
4
2
5
,求直線l的傾斜角.

查看答案和解析>>

科目:高中數學 來源: 題型:

橢圓
x2
a2
+y2=1上存在一點P,使得它對兩個焦點F1,F(xiàn)2的張角∠F1PF2=
π
2
,則該橢圓的離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(理)已知橢圓
x2a2
+y2=1(a>1)
,直線l過點A(-a,0)和點B(a,ta)(t>0)交橢圓于M.直線MO交橢圓于N.
(1)用a,t表示△AMN的面積S;
(2)若t∈[1,2],a為定值,求S的最大值.

查看答案和解析>>

同步練習冊答案