(本小題滿分10分)如圖,D、E分別是AB、AC邊上的點(diǎn),且不與頂點(diǎn)重合,已知為方程的兩根

(1)證明四點(diǎn)共圓
(2)若四點(diǎn)所在圓的半徑
(1)見解析;(2)
解:(Ⅰ)如圖,連接DE,依題意在中,
,由因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182946447751.png" style="vertical-align:middle;" />所以,
,四點(diǎn)C、B、D、E共圓。
(Ⅱ)當(dāng)時(shí),方程的根
因而,取CE中點(diǎn)G,BD中點(diǎn)F,分別過G,F 做AC,AB的垂線,兩垂線交于點(diǎn)H,連接DH, 因?yàn)樗狞c(diǎn)C、B、D、E共圓,所以,H為圓心,半徑為DH.
,,所以,
,
點(diǎn)評(píng):此題考查平面幾何中的圓與相似三角形及方程等概念和性質(zhì)。注意把握判定與性質(zhì)的作用。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(選考題(本小題滿分10分)(請(qǐng)考生在22,23,24三題中任選一題做答,如果多做,則按所做的第一題記分.做答時(shí)用2B鉛筆在答題卡把所選題目的題號(hào)涂黑)
22、(本小題滿分10分)選修4-1幾何證明選講
如圖,D,E分別是AB,AC邊上的點(diǎn),且不與頂點(diǎn)重合,已知為方程的兩根,
(1)  證明 C,B,D,E四點(diǎn)共圓;
(2)  若,求C,B,D,E四點(diǎn)所在圓的半徑。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O過點(diǎn)B、C,圓心O在等腰Rt△ABC的內(nèi)部,,,
.則⊙O的半徑為(    ).

A. 6     B. 13          C.       D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是以為直徑的上一點(diǎn),于點(diǎn),過點(diǎn)的切線,與的延長(zhǎng)線相交于點(diǎn)的中點(diǎn),連結(jié)并延長(zhǎng)與相交于點(diǎn),延長(zhǎng)的延長(zhǎng)線相交于點(diǎn).

(1)求證:
(2)求證:的切線;
(3)若,且的半徑長(zhǎng)為,求的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中,、分別是斜邊上的高和中線,是該圖中共有個(gè)三角形與相似,則(   )
A.0   B.1   C.2     D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


22.(本小題滿分10分)選修4—1:幾何證明選講
如圖所示,AB為⊙O的直徑,BC、CD為⊙O′的切線,BD為切點(diǎn)
(1)求證:ADOC;
(2)若⊙O的半徑為1,求AD·OC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講
如圖,是⊙的直徑,是⊙上的兩點(diǎn),,過點(diǎn)作⊙的切線的延長(zhǎng)線于點(diǎn),連接于點(diǎn).

求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖:四邊形是一個(gè)長(zhǎng)方形臺(tái)球桌面,有白、黑兩球分別位于兩點(diǎn)的位置上.試問,怎樣撞擊白球,才能使白球先碰撞臺(tái)邊,再碰撞,經(jīng)兩次反彈后再擊中黑球?
(將白球移動(dòng)路線畫在圖上,不能說明問題的不予計(jì)分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在梯形ABCD中,AD//BC,AC、BD相交于O,記△BCO、△CDO、△ADO的面積分別為S1、S2、S3,則的取值范圍是                .

查看答案和解析>>

同步練習(xí)冊(cè)答案