【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求f(x)的解析式;
(2)若對(duì)任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
【答案】
(1)解:因?yàn)閒(x)是定義在R上的奇函數(shù),
所以f(0)=0,
所以f(0)= =0,所以b=1,
因?yàn)閒(x)= ,
所以f(﹣x)= = .
因?yàn)閒(﹣x)=﹣f(x),
所以 = ,
所以(2﹣a)(1﹣2x)=0,
所以a=2,
所以f(x)=
(2)解:因?yàn)閒(t2﹣2t)+f(2t2﹣k)<0恒成立,
所以f(t2﹣2t)<﹣f(2t2﹣k)恒成立,
因?yàn)閒(x)為R上的奇函數(shù),
所以f(t2﹣2t)<f(﹣2t2+k)恒成立,
因?yàn)楹瘮?shù)f(x)在R上單調(diào)遞減,
所以t2﹣2t>﹣2t2+k恒成立,所以k<3t2﹣2t恒成立,
又因?yàn)間(t)=3t2﹣2t在R上最小值為
k<﹣
【解析】(1)在R上的奇函數(shù),f(0)=0求參數(shù);(2)不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,轉(zhuǎn)化為k<(3t2﹣2t)min求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知袋中放有形狀大小相同的小球若干,其中標(biāo)號(hào)為0的小球1個(gè),標(biāo)號(hào)為1的小球1個(gè),標(biāo)號(hào)為2的小球個(gè),從袋中隨機(jī)抽取一個(gè)小球,取到標(biāo)號(hào)為2的小球的概率為,現(xiàn)從袋中不放回地隨機(jī)取出2個(gè)小球,記第一次取出的小球標(biāo)號(hào)為,第二次取出的小球標(biāo)號(hào)為.
(1)記“”為事件,求事件發(fā)生的概率.
(2)在區(qū)間上任取兩個(gè)實(shí)數(shù),求事件 “恒成立”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形中, , ,將四邊形沿著折疊,得到圖2所示的三棱錐,其中.
(1)證明:平面平面;
(2)若為中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為豐富人民群眾業(yè)余生活,某市擬建設(shè)一座江濱公園,通過專家評(píng)審篩選處建設(shè)方案A和B向社會(huì)公開征集意見,有關(guān)部分用簡(jiǎn)單隨機(jī)抽樣方法調(diào)查了500名市民對(duì)這兩種方案的看法,結(jié)果用條形圖表示如下:
(1)根據(jù)已知條件完成下面列聯(lián)表,并用獨(dú)立性檢驗(yàn)的方法分析,能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為是否選擇方案A和年齡段有關(guān)?
(2)根據(jù)(1)的結(jié)論,能否提出一個(gè)更高的調(diào)查方法,使得調(diào)查結(jié)果更具代表性,說明理由.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的焦點(diǎn)在軸上,離心率為,拋物線的焦點(diǎn)在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),點(diǎn)在上,點(diǎn)在上,
(1)求曲線, 的標(biāo)準(zhǔn)方程;
(2)請(qǐng)問是否存在過拋物線的焦點(diǎn)的直線與橢圓交于不同兩點(diǎn),使得以線段為直徑的圓過原點(diǎn)?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】太極圖是由黑白兩個(gè)魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相互統(tǒng)一的和諧美.定義:能夠?qū)A的周長(zhǎng)和面積同時(shí)等分成兩部分的函數(shù)稱為圓的一個(gè)“太極函數(shù)”.下列有關(guān)說法中:
①對(duì)圓的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);
②函數(shù)是圓的一個(gè)太極函數(shù);
③存在圓,使得是圓的太極函數(shù);
④直線所對(duì)應(yīng)的函數(shù)一定是圓的太極函數(shù).
所有正確說法的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()將的圖象向右平移兩個(gè)單位,得到函數(shù)的圖象.
(1)求函數(shù)的解析式;
(2)若方程在上有且僅有一個(gè)實(shí)根,求的取值范圍;
(3)若函數(shù)與的圖像關(guān)于直線對(duì)稱,設(shè),已知對(duì)任意的恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+ax+a﹣2=0.
(1)當(dāng)該方程的一個(gè)根為1時(shí),求a的值及該方程的另一根;
(2)求證:不論a取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根.
(3)設(shè)該方程的兩個(gè)實(shí)數(shù)根分別為x1 , x2 , 若2(x1+x2)+x1x2+10=0,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com