(本小題滿分12分)函數(shù)f(x)=ax2-2(a-1)x-2lnx ,a>0

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)對于函數(shù)圖像上的不同兩點A(x1,y1),B(x2,y2),如果在函數(shù)圖像上存在點P(x0,y0)(其中x0在x1與x2之間),使得點P處的切線l平行于直線AB,則稱AB存在“伴隨切線”,當(dāng)x0=  時,又稱AB存在“中值伴隨切線”.試問:在函數(shù)f(x)的圖像上是否存在不同兩點A,B,使得AB存在“中值伴隨切線”?若存在,求出A,B的坐標(biāo);若不存在,說明理由

 

【答案】

(1) 遞增區(qū)間是,遞減區(qū)間是(2)

【解析】(1)先求出函數(shù)的導(dǎo)數(shù),然后根據(jù)導(dǎo)數(shù)知識求出函數(shù)的單調(diào)區(qū)間;(2)對于是否存在問題,先假設(shè)存在,把結(jié)論當(dāng)條件,構(gòu)造函數(shù),利用導(dǎo)數(shù)法得出函數(shù)的單調(diào)性,再利用單調(diào)性得出不等式,推出與已知條件矛盾,得出假設(shè)不成立

解:(1)

,

所以:遞增區(qū)間是,遞減區(qū)間是;………………………………………6分

(2)假設(shè)存在不同兩點,(不妨設(shè)),使得存在“中值伴隨切線”,則,………………………………………7分

化簡得:,即,……………………………8分

設(shè)函數(shù),則,

當(dāng)時,,即上是增函數(shù),………………………10分

,所以,即,與上面結(jié)論矛盾,

所以在函數(shù)的圖像上是不存在不同兩點,使得存在“中值伴隨切線”.12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟(jì)增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案