【題目】已知橢圓 與y軸交于B1、B2兩點,F(xiàn)1為橢圓C的左焦點,且△F1B1B2是腰長為 的等腰直角三角形.
(1)求橢圓C的方程;
(2)設(shè)直線x=my+1與橢圓C交于P、Q兩點,點P關(guān)于x軸的對稱點為P1(P1與Q不重合),則直線P1Q與x軸是否交于一個定點?若是,請寫出該定點坐標,并證明你的結(jié)論;若不是,請說明理由.

【答案】
(1)解:橢圓 與y軸交于B1、B2兩點,

F1為橢圓C的左焦點,且△F1B1B2是腰長為 的等腰直角三角形.可得b=c,a= ,則b=1,

橢圓C的方程:


(2)解:設(shè)P(x1,y1)Q(x2,y2)P1(x1,﹣y1

由直線x=my+1與 聯(lián)立得,(m2+2)y2+2my﹣1=0

韋達定理得,

而直線PQ的方程為 ,令y=0,則 ,

所以直線PQ過定點(2,0)


【解析】(1)利用已知條件求出b=c,a= ,則b=1,推出橢圓C的方程.(2)設(shè)P(x1 , y1),Q(x2 , y2),P1(x1 , ﹣y1)聯(lián)立x=my+1與 ,利用韋達定理得,轉(zhuǎn)化求解直線方程,即可推出結(jié)果.
【考點精析】解答此題的關(guān)鍵在于理解橢圓的標準方程的相關(guān)知識,掌握橢圓標準方程焦點在x軸:,焦點在y軸:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】一個棱錐的三視圖如圖,則該棱錐的全面積(單位:cm2)為(
A.48+12
B.48+24
C.36+12
D.36+24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy內(nèi),動點P到定點F(﹣1,0)的距離與P到定直線x=﹣4的距離之比為
(1)求動點P的軌跡C的方程;
(2)設(shè)點A、B是軌跡C上兩個動點,直線OA、OB與軌跡C的另一交點分別為A1、B1 , 且直線OA、OB的斜率之積等于- ,問四邊形ABA1B1的面積S是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設(shè)D是圖中邊長分別為1和2的矩形區(qū)域,E是D內(nèi)位于函數(shù)y= (x>0)圖象下方的區(qū)域(陰影部分),從D內(nèi)隨機取一個點M,則點M取自E內(nèi)的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在 中, 分別是角 的對邊,且 .
(Ⅰ)求 的大;
(Ⅱ)若 ,求 的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線y=x﹣4被拋物線y2=2mx(m≠0)截得的弦長為 ,求拋物線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】)已知命題p:“x∈[1,2],x2﹣a≥0”,命題q:“x∈R,x2+2ax+2﹣a=0”.若命題“p且q”是真命題,則實數(shù)a的取值范圍為(
A.﹣2≤a≤1
B.a≤﹣2或1≤a≤2
C.a≥1
D.a≤﹣2或 a=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)= (x>0).
(1)求f(x)的最大值;
(2)證明:對任意實數(shù)a、b,恒有f(a)<b2﹣3b+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù)如表:

x

1

2

3

4

5

y

1.3

1.9

2.5

2.7

3.6


(1)畫出散點圖;
(2)根據(jù)下面提供的參考公式,求出回歸直線方程,并估計當x=8時,y的值.
(參考公式: = = , =

查看答案和解析>>

同步練習冊答案