已知a=,集合A={x|x≤2},則下列表示正確的是( )
A.a(chǎn)∈A
B.a(chǎn)∉A
C.{a}∈A
D.a(chǎn)⊆A
【答案】分析:根據(jù)題意,分析選項(xiàng),對(duì)于A、由<2,可得a∈A,A正確,進(jìn)而可得B錯(cuò)誤,對(duì)于C、集合之間符號(hào)有誤,對(duì)于D、元素與集合之間符號(hào)有誤;綜合可得答案.
解答:解:根據(jù)題意,分析選項(xiàng)
對(duì)于A、<2,即有a∈A,A正確;
對(duì)于B、<2,即有a∈A,B錯(cuò)誤;
對(duì)于C、集合之間符號(hào)有誤,應(yīng)為{a}⊆A,C錯(cuò)誤;
對(duì)于D、元素與集合之間符號(hào)有誤,應(yīng)為a∈A,D錯(cuò)誤;
故選A.
點(diǎn)評(píng):本題考查元素與集合之間關(guān)系的判斷,是簡(jiǎn)單題;要注意集合與集合之間、元素與集合之間所用的符號(hào)不同.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(t)=at2-
b
t+
1
4a
(t∈R)有最大值,且最大值為正實(shí)數(shù),集合A={x|
x-a
x
<0},集合B={x|x2<b2}
(1)求集合A和B;
(2)定義:“A-B={x∈A,且x∉B}”設(shè)a,b,x均為整數(shù),且x∈A.記P(E)為x取自集合A-B的概率,P(F)x取集合A∩B的概率.已知P(E)=
2
3
,P(F)=
1
3
.記滿足上述條件的所有a的值從小到大排列構(gòu)成的數(shù)列為{an},所有b的值從小到大排列構(gòu)成數(shù)列{bn}.
①求a1,a2,a3和b1,b2,b3
②請(qǐng)寫(xiě)出數(shù)列{an}和{bn}的通項(xiàng)公式(不必證明);
③如果在函數(shù)中f(t)中,a=an,b=bn,記f(t)的最大值為g(n),cn=
1-12g(n)
4g(n)
,Sn=c1c2+c2c3+…+cncn+1,求證:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|
12
2x<4}
,B={x|x-1>0},定義A-B={x|x∈A,且x∉B}.
(1)在圖中把表示“集合A-B”的部分用陰影涂黑;
(2)求A-B和B-A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+x-2,設(shè)滿足“當(dāng)0<x<
12
時(shí),不等式f(x)+3<2x+a恒成立”的實(shí)數(shù)a的集合為A,滿足“當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-ax是單調(diào)函數(shù)”的實(shí)數(shù)a的集合為B,求A∩CRB(R為實(shí)數(shù)集).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•成都模擬)已知集合A={-1,0,1,2,3,2
2
+1},集合B={1,2,3,4,5,9},映射f:A→B的對(duì)應(yīng)法則為f:x→y=x2-2x+2,設(shè)集合M={m∈B|m在集合A中存在原象},集合N={n∈B|n在集合A中不存在原象},若從集合M、N中各取一個(gè)元素組成沒(méi)有重復(fù)數(shù)字的兩位數(shù)的個(gè)數(shù)(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知非空集合A、B滿足A∩B≠∅,下面命題一定正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案