設(shè)函數(shù)數(shù)學(xué)公式
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果當(dāng)數(shù)學(xué)公式恒成立,則求實(shí)數(shù)a的取值范圍.

解:(1)由題意可知函數(shù)f(x)的定義域?yàn)椋?,+∞),,
設(shè)g(x)=x2-2ax+2a,△=4a2-8a=4a(a-2),
①當(dāng)△≤0,即0≤a≤2,g(x)≥0,
∴f(x)≥0,f(x)在(1,+∞)上單調(diào)遞增.
②當(dāng)a<0時(shí),g(x)的對(duì)稱軸為x=a,當(dāng)x>1時(shí),由二次函數(shù)的單調(diào)性可知g(x)>g(1)>0,
∴f(x)>0,f(x)在(1,+∞)上單調(diào)遞增.
③當(dāng)a>2時(shí),設(shè)x1,x2(x1<x2)是方程x2-2ax+2a=0的兩個(gè)根,則
當(dāng)1<x<x1或x>x2時(shí),f(x)>0,f(x)在(1,x1),(x2,+∞)上是增函數(shù).
當(dāng)x1<x<x2時(shí),f(x)<0,f(x)在(x1,x2)上是減函數(shù).
綜上可知:當(dāng)a≤2時(shí),f(x)在(1,+∞)上單調(diào)遞增;
當(dāng)a>2時(shí),f(x)的單調(diào)增區(qū)間為(1,x2),(x2,+∞),單調(diào)遞減區(qū)間為(x1,x2).
(2),即,(*)
令h(x)=f(x)-a,由(1)知:
①當(dāng)a≤2時(shí),f(x)在(1,+∞)上是增函數(shù),所以h(x)在(1,+∞)是增函數(shù).
因?yàn)楫?dāng)1<x<2時(shí),h(x)<h(2)=0,∴(*)式成立;
當(dāng)x>2時(shí),h(x)>h(2)=0,∴(*)成立;
所以當(dāng)a≤2時(shí),(*)成立
②當(dāng)a>2時(shí),因?yàn)閒(x)在(x1,2)上是減函數(shù),所以h(x)在(x1,2)上是減函數(shù),所以當(dāng)x1<x<2時(shí),h(x)>h(2)=0,(*)不成立.
綜上可知,a的取值范圍為(-∞,2].
分析:(1)通過(guò)對(duì)函數(shù)f(x)求導(dǎo),進(jìn)而轉(zhuǎn)化為判斷二次函數(shù)y=x2-2ax+2a的正負(fù)問(wèn)題,再對(duì)a分類討論即可.
(2)當(dāng)恒成立問(wèn)題,轉(zhuǎn)化為當(dāng)x>1,且x≠2時(shí)恒成立問(wèn)題,只要利用(1)的結(jié)論對(duì)a及x進(jìn)行分類討論f(x)-a及x-2的符號(hào)即可.
點(diǎn)評(píng):本題綜合考查了函數(shù)的單調(diào)性及恒成立問(wèn)題,關(guān)鍵是通過(guò)分類討論得到函數(shù)的單調(diào)區(qū)間及會(huì)轉(zhuǎn)化利用已證的結(jié)論解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+c,(-4≤x<0)
-x+3,(x≥0)
,若f(-4)=f(0),f(-2)=-1,
(1)求函數(shù)f(x)的解析式,
(2)畫出函數(shù)f(x)的圖象,并指出函數(shù)的定義域和值域.
(3)解不等式xf(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•成都模擬)設(shè)函數(shù)f(x)=
x2+bx+c
2
其中b>0,c∈R.當(dāng)且僅當(dāng)x=-2時(shí),函數(shù)f(x)取得最小值-2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若方程f(x)=x+a(a∈R)至少有兩個(gè)不相同的實(shí)數(shù)根,求a取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年岳陽(yáng)一中二模文)(12分)

設(shè)函數(shù)

 (1)求函數(shù)f(x)的單調(diào)區(qū)間,并求函數(shù)f(x)的極大值和極小值;

 (2)當(dāng)x∈[a+1, a+2]時(shí),不等,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)

   (1)求函數(shù)f(x)的單調(diào)區(qū)間,并求函數(shù)f(x)的極大值和極小值;

   (2)當(dāng)x∈[a+1, a+2]時(shí),不等,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省泰州市姜堰市蔣垛中學(xué)高三數(shù)學(xué)綜合練習(xí)2(文科)(解析版) 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)f(x)的值域;
(2)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若,,且C為銳角,求sinA的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案