(08年岳陽一中二模文)(12分)

設(shè)函數(shù)

 (1)求函數(shù)f(x)的單調(diào)區(qū)間,并求函數(shù)f(x)的極大值和極小值;

 (2)當(dāng)x∈[a+1, a+2]時,不等,求a的取值范圍.

解析:(1)∵f′(x)=-x2+4ax-3a2=-(x-3a)(x-a),由f′(x)>0得:a<x<3a

由f′(x)<0得,x<a或x>3a,

則函數(shù)f(x)的單調(diào)遞增區(qū)間為(a, 3a),單調(diào)遞減區(qū)間為(-∞,a)和(3a,+∞)

列表如下:

x

(-∞,a)

a

(a, 3a)

3a

(3a,+ ∞)

f′(x)

0

+

0

f(x)

a3+b

b

∴函數(shù)f(x)的極大值為b,極小值為-a3+b     …………………………6分

   (2)上單調(diào)遞

減,因此

    ∵不等式|f′(x)|≤a恒成立,令

,

   得  即a的取值范圍是…………12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年岳陽一中二模理)(12分)  一個盒子中裝有6張卡片,上面分別寫著如下6個定義域均為R的函數(shù):

.

(1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得到一個新函數(shù),求所得函數(shù)

為奇函數(shù)的概率;

(2)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進行。求抽取次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年岳陽一中二模理)(12分) 已知梯形中,,、分別是、上的點,,的中點,沿將 梯形翻折,使平面平面(如圖)。

  (1)當(dāng)時,求證:;

  (2)若以F、B、C、D為頂點的三棱錐的體積記為,求的最大值;當(dāng)取得最大值時,求二面角D-BF-C的大小。

 

 

         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年岳陽一中二模理)(13分) 對于函數(shù),若存在,使成立,則稱的不動點。如果函數(shù)有且僅有兩個不動點、,且

(1)試求函數(shù)的單調(diào)區(qū)間;

(2)已知各項不為零的數(shù)列滿足,求證:

(3)設(shè),為數(shù)列的前項和,求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年岳陽一中二模文)(12分)

有A、B、C、D、E五支足球隊參加某足球邀請賽,比賽采用單循環(huán)制,每場比賽勝隊得3分,負隊得0分;若為平局則雙方各得1分。已知任何一個隊打勝、打平或被打敗的概率都是。

(1)       求打完全部比賽A隊取得3分的概率;

(2)       求打完全部比賽A隊勝的次數(shù)多于負的次數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年岳陽一中二模文)(12分)

設(shè)數(shù)列的各項都是正數(shù),且對任意,都有,記為數(shù)列的前項和。

(1)       求證:;

(2)       求數(shù)列的通項公式;

(3)       若為非零常數(shù),),問是否存在整數(shù),使得對任意,都有。

查看答案和解析>>

同步練習(xí)冊答案