某企業(yè)通過(guò)調(diào)查問(wèn)卷(滿(mǎn)分50分)的形式對(duì)本企業(yè)900名員土的工作滿(mǎn)意度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(16名女員工,14名男員工)的得分,如下表:
47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49
37 35 34 43 46 36 38 40 39 32 48 33 40 34    
(1)根據(jù)以上數(shù)據(jù),估計(jì)該企業(yè)得分大于45分的員工人數(shù);
(2)現(xiàn)用計(jì)算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平均得分為‘滿(mǎn)意’,否則為“不滿(mǎn)意”,請(qǐng)完成下列表格:
  “滿(mǎn)意”的人數(shù) “不滿(mǎn)意”人數(shù) 合計(jì)
    16
    14
合計(jì)     30
〔3)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的方法判斷,能否在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿(mǎn)意”有關(guān)?參考數(shù)據(jù):
P(K2≥k) 0.10 0.050 0.025 0.010 0.001
k 2.706 3.841 5.024 6.635 10.828
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專(zhuān)題:綜合題,概率與統(tǒng)計(jì)
分析:(1)求出任選一名員工,它的得分大于45分的概率,即可估計(jì)該企業(yè)得分大于45分的員工人數(shù);
(2)根據(jù)所給數(shù)據(jù),可得2×2列聯(lián)表;
(3)求出k,與臨界值比較,即可得出能否在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿(mǎn)意”有關(guān).
解答: 解:(1)從表中可知,30名員工中有8名得分大于45分,
所以任選一名員工,它的得分大于45分的概率是
8
30
=
4
15

所以估計(jì)該企業(yè)得分大于45分的員工人數(shù)為900×
4
15
=240;
(2)表格:
  “滿(mǎn)意”的人數(shù) “不滿(mǎn)意”人數(shù) 合計(jì)
12   4 16
 3 11  14
合計(jì)  15 15  30
〔3)k=
30×(12×11-3×4)2
15×15×16×14
≈8.571>6.635.
因?yàn)镻(K2>6.635)=0.010,
所以在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿(mǎn)意”有關(guān).
點(diǎn)評(píng):本題考查了古典概型,列聯(lián)表,獨(dú)立性檢驗(yàn)的方法等知識(shí),考查了學(xué)生處理數(shù)據(jù)和運(yùn)算求解的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:直線x-y+m=0與圓x2+y2-2x-4y+3=0沒(méi)有公共點(diǎn).q:不等式x-
1
x
-m≥0對(duì)于任意x∈[2,3]恒成立.若p或q為真命題,p且q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,O為總信號(hào)源點(diǎn),A,B,C是三個(gè)居民區(qū),已知A,B都在O的正東方向上,OA=10km,OB=20km,C在O的北偏西45°方向上,CO=5
2
km.
(1)求居民區(qū)A與C的距離;
(2)現(xiàn)要經(jīng)過(guò)點(diǎn)O鋪設(shè)一條總光纜直線EF(E在直線OA的上方),并從A,B,C分別鋪設(shè)三條最短分光纜連接到總光纜EF.假設(shè)鋪設(shè)每條分光纜的費(fèi)用與其長(zhǎng)度的平方成正比,比例系數(shù)為m(m為常數(shù)).設(shè)∠AOE=θ(0≤θ<π),鋪設(shè)三條分光纜的總費(fèi)用為w(元).
①求w關(guān)于θ的函數(shù)表達(dá)式;
②求w的最小值及此時(shí)tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B是橢圓
x2
2
+y2=1上的兩點(diǎn),且
AF
FB
,其中F為橢圓的右焦點(diǎn).
(1)求實(shí)數(shù)λ的取值范圍;
(2)在x軸上是否存在一個(gè)定點(diǎn)M,使得
MA
MB
為定值?若存在,求出定值和定點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)一種產(chǎn)品的成本費(fèi)共由三部分組成:①原材料費(fèi)每件50元;②職工工資支出7500+20x元;③電力與機(jī)器保養(yǎng)等費(fèi)用為 x2-30x+6000元(其中x為產(chǎn)品件數(shù)).
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該產(chǎn)品是供不應(yīng)求的商品,根據(jù)市場(chǎng)調(diào)查,每件產(chǎn)品的銷(xiāo)售價(jià)為Q(x)=1240-
1
30
x2,試問(wèn)當(dāng)產(chǎn)量處于什么范圍時(shí),工廠4處于生產(chǎn)潛力提升狀態(tài)(生產(chǎn)潛力提升狀態(tài)是指如果產(chǎn)量再增加,則獲得的總利潤(rùn)也將隨之增大)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一組數(shù)據(jù)的頻率分布直方圖如圖所示.求眾數(shù)、中位數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)是R上的單調(diào)函數(shù),若函數(shù)y=f(x2)+f(k-x)只有一個(gè)零點(diǎn),則實(shí)數(shù)k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos2α=-
3
5
,α∈(0,
π
2
),則sin(α+
π
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x<0,則x+
4
x
的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案