已知

   (1)若的單調(diào)遞增區(qū)間;

   (2)若的最大值為4,求實(shí)數(shù)a的值。

解:

                                              

                                                     

   (1)令

       

   (2)若

                                     

則由條件有

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省德州市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(I)討論的單調(diào)性;

(Ⅱ)若在(1,+)恒成立,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省淄博市沂源一中高一(上)第三次月考數(shù)學(xué)試卷(B卷)(解析版) 題型:解答題

已知≤a≤1,若f(x)=ax2-2x+1在區(qū)間[1,3]上的最大值M(a),最小值N(a),設(shè)g(a)=M(a)-N(a).
(1)求g(a)的解析式;
(2)判斷g(a)單調(diào)性,求g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省佛山市龍山中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知≤a≤1,若f(x)=ax2-2x+1在區(qū)間[1,3]上的最大值M(a),最小值N(a),設(shè)g(a)=M(a)-N(a).
(1)求g(a)的解析式;
(2)判斷g(a)單調(diào)性,求g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖北省荊州中學(xué)高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知≤a≤1,若f(x)=ax2-2x+1在區(qū)間[1,3]上的最大值M(a),最小值N(a),設(shè)g(a)=M(a)-N(a).
(1)求g(a)的解析式;
(2)判斷g(a)單調(diào)性,求g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣州省2009-2010學(xué)年高二學(xué)科競(jìng)賽(數(shù)學(xué)理) 題型:解答題

(本小題滿分14分)已知函數(shù)()

   (1) 判斷函數(shù)的單調(diào)性;

   (2) 是否存在實(shí)數(shù)使得函數(shù)在區(qū)間上有最小值恰為? 若存在,求出的值;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案