定義新運(yùn)算“”:當(dāng)a≥b時(shí),ab=a;當(dāng)a<b時(shí),ab=b2,則函數(shù)f(x)=(1x)x-(2x),x∈[-2,2]的最大值等于(   )

A、-1        B、1         C、6         D、12

 

【答案】

C.

【解析】:當(dāng)-2≤x≤1時(shí),f(x)= (1x)x-(2x)=1·x-2=x-2,此時(shí)-4≤f(x)≤-1,

當(dāng)1<x≤2時(shí),f(x)=x2·x-2=x3-2,此時(shí)-1<f(x)≤6,綜上可知-4≤f(x)≤6,∴f(x)max=6.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、在實(shí)數(shù)的原有運(yùn)算中,我們補(bǔ)充定義新運(yùn)算“⊕”如下:當(dāng)a≥b時(shí),a⊕b=a;當(dāng)a<b時(shí),a⊕b=b2.設(shè)函數(shù)f(x)=(1⊕x)x-(2⊕x),x∈[-2,2],則函數(shù)f(x)的值域?yàn)?div id="o1aiiua" class="quizPutTag">[-4,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

10、在實(shí)數(shù)的原有運(yùn)算法則中,我們補(bǔ)充定義新運(yùn)算“⊕”如下:當(dāng)a≥b時(shí),a⊕b=a;當(dāng)a<b時(shí),a⊕b=b2.則函數(shù)f(x)=(1⊕x)•x-(2⊕x)(x∈[-2,2])的最大值等于(“•”和“-”仍為通常的乘法和減法)(

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)的原有運(yùn)算法則下,我們定義新運(yùn)算“⊕”為:當(dāng)a≥b時(shí),a⊕b=a;當(dāng)a<b時(shí),a⊕b=b2.則函數(shù)f(x)=(1⊕x)x-(2⊕x)(其中x∈[-2,2])的最大值等于(上式中“•”和“-”仍為通常的乘法和減法)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)運(yùn)算中,定義新運(yùn)算“⊕”如下:當(dāng)a≥b時(shí),a⊕b=a; 當(dāng)a<b時(shí),a⊕b=b2.則函數(shù)f(x)=(1⊕x)+(2⊕x)(其中x∈[-2,3])的最大值是( 。ā+”仍為通常的加法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)的原有運(yùn)算法則(“•”和“-”仍為通常的乘法和減法)中,我們補(bǔ)充定義新運(yùn)算“⊕”如下:當(dāng)a≥b時(shí),a⊕b=a;當(dāng)a<b時(shí),a⊕b=b2.則當(dāng)x∈[-2,2]時(shí),函數(shù)f(x)=(1⊕x)•x-(2⊕x)的最大值等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案