給出下列命題:
①函數(shù)(x∈R)是偶函數(shù);
②函數(shù)(x∈R)的周期為π;
③函數(shù)在閉區(qū)間上是增函數(shù);
④將函數(shù)(x∈R)的圖象向左平移個單位,得到函數(shù)y=cos2x的圖象.
其中正確的命題的序號是:   
【答案】分析:①利用誘導公式將函數(shù)解析式化簡后容易判斷奇偶性
②利用二倍角余弦公式,將函數(shù)解析式降次后,容易求出最小正周期
③將x+看作整體,換元后考察y=sint在t∈ 的單調(diào)性即可.
④利用三角函數(shù)圖象變化規(guī)律,求出向左平移后函數(shù)解析式,判斷正誤.
解答:解:①函數(shù)===cos2x.且 cos(-2x)=cos2x(x∈R),f(x)是偶函數(shù).①正確
==cos2x.最小正周期為T==π.②正確
③令t=x+,x∈,則y=sint,t∈,由正弦函數(shù)的單調(diào)性知y=sint在t∈不為增函數(shù),
所以函數(shù)在閉區(qū)間上不為增函數(shù).③錯誤.
 ④將函數(shù)(x∈R)的圖象向左平移個單位,得到函數(shù) =的圖象,不為函數(shù)y=cos2x的圖象  ④錯誤.
故答案為:①②
點評:本題考查三角函數(shù)圖象變換規(guī)律,三角函數(shù)圖象、性質(zhì).考查三角函數(shù)式恒等變形能力.本題易錯點在于④,平移變換是針對單個x而言,指的是x的變化數(shù)量.要將x的系數(shù)提出后再進行左加右減的相位變換.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①函數(shù)f(x)=4cos(2x+
π
3
)
的一條對稱軸是直線x=-
12

②已知函數(shù)f(x)=min{sinx,cosx},則f(x)的值域為[-1,
2
2
]

③若α,β均為第一象限角,且α>β,則sinα>sinβ.
其中真命題的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
(3a-1)x-2  x<1
logax         x≥1
,現(xiàn)給出下列命題:
①函數(shù)f(x)的圖象可以是一條連續(xù)不斷的曲線;
②能找到一個非零實數(shù)a,使得函數(shù)f (x)在R上是增函數(shù);
③a>1時函數(shù)y=f (|x|) 有最小值-2.
其中正確的命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的“l(fā)高調(diào)函數(shù)”.現(xiàn)給出下列命題:
①函數(shù)f(x)=2x為R上的“1高調(diào)函數(shù)”;
②函數(shù)f(x)=sin2x為R上的“A高調(diào)函數(shù)”;
③如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上“m高調(diào)函數(shù)”,那么實數(shù)m的取值范圍是[2,+∞);
其中正確的命題是
①②③
①②③
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①函數(shù)y=sin|x|不是周期函數(shù);        ②函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
③函數(shù)y=|cos2x+
1
2
|
的周期是
π
2
;    ④函數(shù)y=sin(x+
2
)
是偶函數(shù).
其中正確的命題的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①函數(shù)y=cos(
2
3
x+
π
2
)
是奇函數(shù);②函數(shù)y=sinx+cosx的最大值為
3
2
;
③函數(shù)y=tanx在第一象限內(nèi)是增函數(shù);
④函數(shù)y=sin(2x+
π
2
)
的圖象關(guān)于直線x=
π
12
成軸對稱圖形.
其中正確的命題序號是

查看答案和解析>>

同步練習冊答案