【題目】已知直線的參數(shù)方程: (為參數(shù)),曲線的參數(shù)方程: (為參數(shù)),且直線交曲線于兩點.
(1)將曲線的參數(shù)方程化為普通方程,并求時, 的長度;
(2)巳知點,求當直線傾斜角變化時, 的范圍.
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,BC邊上的高所在直線的方程為x+2y+3=0,∠A的平分線所在直線的方程為y=0,若點B的坐標為(﹣1,﹣2),分別求點A和點C的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某互聯(lián)網公司為了確定下一季度的前期廣告投入計劃,收集了近個月廣告投入量(單位:萬元)和收益(單位:萬元)的數(shù)據(jù)如下表:
月份 | ||||||
廣告投入量 | ||||||
收益 |
他們分別用兩種模型①,②分別進行擬合,得到相應的回歸方程并進行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計量的值:
(Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應選擇哪個模型?并說明理由;
(Ⅱ)殘差絕對值大于的數(shù)據(jù)被認為是異常數(shù)據(jù),需要剔除:
(。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程
(ⅱ)若廣告投入量時,該模型收益的預報值是多少?
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】①在同一坐標系中,與的圖象關于軸對稱
②函數(shù)是奇函數(shù)
③函數(shù)的圖象關于成中心對稱
④函數(shù)的最大值為
以上四個判斷正確有_____________.(寫上序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)不完全統(tǒng)計,某廠的生產原料耗費(單位:百萬元)與銷售額(單位:百萬元)如下:
2 | 4 | 6 | 8 | |
30 | 40 | 50 | 70 |
變量、為線性相關關系.
(1)求線性回歸方程必過的點;
(2)求線性回歸方程;
(3)若實際銷售額要求不少于百萬元,則原材料耗費至少要多少百萬元。
,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若采用隨機模擬的方法估計某運動員射擊擊中目標的概率.先由計算器給出0到9之間取整數(shù)的隨機數(shù),指定0,1,2,3表示沒有擊中目標,4,5,6,7,8,9表示擊中目標,以4個隨機數(shù)為一組,代表射擊4次的結果,經隨機模擬產生了20組如下的隨機數(shù):
7327 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根據(jù)以上數(shù)據(jù)估計該運動員射擊4次至少擊中3次的概率為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x).
(1)畫出函數(shù)f(x)的圖象,根據(jù)圖象直接寫出f(x)的值域;
(2)根據(jù)圖象直接寫出滿足f(x)≥2的所有x的集合;
(3)若f(x)的遞減區(qū)間為(﹣∞,a),遞增區(qū)間為(b,+∞),直接寫出a的最大值,b的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求證: ;
(2)設函數(shù) ,且有兩個不同的零點 ,
①求實數(shù)的取值范圍; ②求證: .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com