“m>n>0”是”方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”的______條件.
當(dāng)“m>n>0”時(shí)”方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”成立,
即“m>n>0”?”方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”為真命題,
當(dāng)“方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”時(shí)“m>n>0”也成立
即“方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”?“m>n>0”也為真命題
故“m>n>0”是”方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”的充要條件
故答案為:充要
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)給出下列四個(gè)命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則?=
π
6
5
6
π
;
②已知O、A、B、C是平面內(nèi)不同的四點(diǎn),且
OA
OB
OC
,則α+β=1是A、B、C三點(diǎn)共線的充要條件;
③若數(shù)列an恒滿足
a
2
n+1
a
2
n
=p
(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達(dá)式為n=
1
12
(4k+8)

(k∈N*).
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足an+12-an2=d(其中d是常數(shù),n∈N﹡),則稱數(shù)列{an}是“等方差數(shù)列”.已知數(shù)列{bn}是公差為m的差數(shù)列,則m=0是“數(shù)列{bn}是等方差數(shù)列”的
充要條件
充要條件
條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要條件中的一個(gè))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足
a
2
n+1
-
a
2
n
=d(其中d是常數(shù),n∈N),則稱數(shù)列{an}是“等方差數(shù)列”.已知數(shù)列{bn}是公差為m的差數(shù)列,則m=0是“數(shù)列{bn}是等方差數(shù)列”的
充要條件
充要條件
條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要條件中的一個(gè))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(4,0),N(1,0)若動(dòng)點(diǎn)P滿足
MN
MP
=6|
NP
|

(1)求動(dòng)點(diǎn)P的軌跡方C的方程;
(2)設(shè)Q是曲線C上任意一點(diǎn),求Q到直線l:x+2y-12=0的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②某只股票經(jīng)歷了10個(gè)跌停(下跌10%)后需再經(jīng)過10個(gè)漲停(上漲10%)就可以回到原來的凈值;
③某校高三一級(jí)部和二級(jí)部的人數(shù)分別是m、n,本次期末考試兩級(jí)部數(shù)學(xué)平均分分別是a、b,則這兩個(gè)級(jí)部的數(shù)學(xué)平均分為
na
m
+
mb
n
;
④某中學(xué)采用系統(tǒng)抽樣方法,從該校高一年級(jí)全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查,現(xiàn)將800名學(xué)生從l到800進(jìn)行編號(hào).已知從497~513這16個(gè)數(shù)中取得的學(xué)生編號(hào)是503,則初始在第1小組1~16中隨機(jī)抽到的學(xué)生編號(hào)是7.
其中真命題的個(gè)數(shù)是( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案