在棱長為2的正方體ABCD-A1B1C1D1中,M、N分別是A1B1、BB1的中點,那么直線AM與CN所成的角的余弦值是(  )
A、
3
2
B、
10
10
C、
3
5
D、
2
5
考點:異面直線及其所成的角
專題:空間角
分析:建立空間直角坐標系D-xyz,利用向量法能求出直線AM與CN所成的角的余弦值.
解答: 解:如圖,建立空間直角坐標系D-xyz,
由題意知A(2,0,0),M(2,1,2),
C(0,2,0),N(2,2,1),
AM
=(0,1,2)
CN
=(2,0,1),
設(shè)直線AM與CN所成的角為θ,
則cosθ=|cos<
AM
CN
>|=|
2
5
5
|=
2
5

∴直線AM與CN所成的角的余弦值是
2
5

故選:D.
點評:本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時要認真審題,注意向量法的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,S4=6,a7+a8+a9+a10=30,則公差d=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a0=
3
,an+1=[an]+
1
{an}
,([an]與{an}分別表示an的整數(shù)部分與分數(shù)部分),則a2014=(  )
A、3020+
3
B、3020+
3
-1
2
C、
3
+3018
D、3018+
3
-1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用10元、5元和1元來支付20元錢的書款,不同的支付方法有( 。
A、3B、5C、9D、12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對下面三件事:
①科技報告廳有32排,每排有40個座位,有一次報告會恰好坐滿了聽眾,報告會結(jié)束后,為了聽取意見,需要請32名聽眾進行座談;
②某班數(shù)學成績有15人在120分以上,40人在90~119分之間,1人不及格,現(xiàn)從中抽出8人研討,進一步改進教與學;
③某中學的15名藝術(shù)特長生中選出3人調(diào)查學習負擔情況.
所采用的抽樣方法依次為(  )
A、簡單隨機抽樣,分層抽樣,簡單隨機抽樣
B、系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣
C、分層抽樣,簡單隨機抽樣,簡單隨機抽樣
D、系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖莖葉圖記錄了甲乙兩組各五名學生在一次英語聽力測試中的成績(單位:分),已知甲組數(shù)據(jù)的中位數(shù)為17,乙組數(shù)據(jù)的平均數(shù)為17.4,則x,y的值分別為( 。
A、7,8B、5,7
C、8,5D、8,7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=xlnx在x=1處的切線為( 。
A、y=x+1
B、y=x-1
C、y=1-x
D、y=1-2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

O為坐標原點,F(xiàn)為拋物線C:y2=4x的焦點,P為C上一點,若|PF|=3.則△POF的面積為( 。
A、
2
B、2
2
C、
3
D、2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,滿足Sn=2an-2n(n∈N*),令bn=
an
2n

(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

同步練習冊答案