數(shù)列{an}中a1=
1
4
,an=
1
2
an-1+2-n,則a4=
 
考點(diǎn):數(shù)列的函數(shù)特性
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:根據(jù)數(shù)列的遞推關(guān)系,即可得到結(jié)論.
解答: 解:∵a1=
1
4
,an=
1
2
an-1+2-n,
∴a2=
1
2
a1+2-2=
1
2
×
1
4
+
1
4
=
3
8
,
a3=
1
2
a2+2-3=
1
2
×
3
8
+
1
8
=
5
16

a4=
1
2
a3+2-4=
1
2
×
5
16
+
1
16
=
7
32

故答案為:
7
32
點(diǎn)評(píng):本題主要考查數(shù)列項(xiàng)的計(jì)算,根據(jù)遞推數(shù)列依次進(jìn)行遞推是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
8
x2-4x+5
的值域?yàn)?div id="ta0jv0b" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的偶函數(shù),在[0,+∞)上是減函數(shù),且f(2)=0,則不等式xf(x)<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)非零向量
a
b
所成的角為θ(0≤θ≤π),規(guī)定向量
c
=
a
×
b
,滿足:
(1)模:|
c
|=|
a
||
b
|sinθ;
(2)方向:向量
c
的方向垂直于向量
a
b
(向量
a
b
構(gòu)成的平面),且符合“右手定則”:用右手的四指表示向量
a
的方向,然后手指朝著手心的方向擺動(dòng)角度θ到向量
b
的方向,大拇指所指的方向就是向量
c
的方向.
這樣的運(yùn)算就叫向量的叉乘,又叫外積、向量積.
對(duì)于向量的叉乘運(yùn)算,下列說法正確的是
 

a
×
a
=
0
;      
a
×
b
=
0
等價(jià)于
a
b
共線;
③叉乘運(yùn)算滿足交換律,即
a
×
b
=
b
×
a

④叉乘運(yùn)算滿足數(shù)乘結(jié)合律,即λ(
a
×
b
)=(λ
a
)×
b
=
a
×(λ
b
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
a
=(sinA,1),
b
=(
3
,cosA),且
a
b
,則角A的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若矩陣A=
01
10
,B=
1
0
,則A和B的乘積AB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=1+
2a(sinθ-cosθ)
a2+2acosθ+2
(a,θ∈R,a≠0),那么對(duì)于任意的a,θ,則此函數(shù)的最大值與最小值之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a2+a3+…+a8=8,
1
a2
+
1
a3
+…+
1
a8
=2,則a5的值( 。
A、±2B、2C、±3D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2(1-x)+1,-1≤x<k
x3-3x+2,k≤x≤a
,若存在k使得函數(shù)f(x)的值域是[0,2],則實(shí)數(shù)a的取值范圍是( 。
A、[
3
,+∞)
B、[1,
3
]
C、(0,
3
]
D、{2}

查看答案和解析>>

同步練習(xí)冊(cè)答案