已知拋物線C:y2=8x,過點(diǎn)P(2,0)的直線與拋物線交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則
OA
OB
的值為(  )
A、-16B、-12C、4D、0
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用,圓錐曲線的定義、性質(zhì)與方程
分析:由拋物線y2=8x與過其焦點(diǎn)(2,0)的直線方程聯(lián)立,消去y整理成關(guān)于x的一元二次方程,設(shè)出A(x1,y1)、B(x2,y2)兩點(diǎn)坐標(biāo),
OA
OB
=x1•x2+y1•y2,由韋達(dá)定理可以求得答案.
解答: 解:由題意知,拋物線y2=8x的焦點(diǎn)坐標(biāo)為(2,0),∴直線AB的方程為y=k(x-2),
y2=8x
y=k(x-2)
得k2x2-(4k2+8)x+4k2=0,設(shè)A(x1,y1),B(x2,y2),
則x1•x2=4,x1+x2=
4k2+8
k2

y1•y2=k(x1-2)•k(x2-2)=k2[x1•x2-2(x1+x2)+4]=k2[4-2×
4k2+8
k2
+4]=-16
OA
OB
=x1•x2+y1•y2=4-16=-12,
故選B.
點(diǎn)評:本題考查直線與圓錐曲線的關(guān)系,解決問題的關(guān)鍵是聯(lián)立拋物線方程與過其焦點(diǎn)的直線方程,利用韋達(dá)定理予以解決,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx,g(x)=
1
2
x2+mx+
7
2
(m<0),直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(Ⅰ)求直線l的方程及m的值.
(2)在(1)的條件下求函數(shù)F(x)=x-
m
x
(x>0)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=4和點(diǎn)M(1,a),
(1)若過點(diǎn)M有且只有一條直線與圓O相切,求實(shí)數(shù)a的值,并求出切線方程;
(2)若a=2,圓O上有一動點(diǎn)N(x0,y0),設(shè)線段MN上一點(diǎn)P滿足MP=2PN,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)研究發(fā)現(xiàn),學(xué)生的注意力隨著老師講課時(shí)間的變化而變化,講課開始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散.設(shè)f(t)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過實(shí)驗(yàn)分析得知:f(t)=
-t2+26t+80 ,  0<t≤10
240 ,          10≤t≤20
kt+400 ,         20≤t≤40

(1)求出k的值,并指出講課開始后多少分鐘,學(xué)生的注意力最集中?能堅(jiān)持多久?
(2)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到185,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=x2+bx+4,(b∈R)與x軸有交點(diǎn),若對一切非零實(shí)數(shù)x,都有f(x+
1
x
)≥0.
(1)求實(shí)數(shù)b的取值集合;
(2)若b=-4,設(shè)函數(shù)g(x)=f(x)+
a
f(x)
,x∈[3,2+
2
],求h(a)=g(x)max-g(x)min的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)k進(jìn)制數(shù)132與十進(jìn)制數(shù)30相等,那么k等于( 。
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在x0點(diǎn)的某個(gè)鄰域內(nèi)有定義,則f(x)在x0處連續(xù)的充分必要條件是( 。
A、
lim
x-x0
f(x)存在
B、
lim
x→x0-
f(x)=
lim
x→x0+
f(x)
C、
lim
x-x0
f(x)=0
D、在x0的某個(gè)鄰域內(nèi),f(x)=f(x0)+α(x),其中
lim
x-x0
α(x)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a2>b2+c2,求A的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l到兩平行直線2x-y+2=0和4x-2y+3=0的距離相等,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案