【題目】如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PCD⊥平面ABCD,AB=2,BC=1,,E為PB中點.利用空間向量方法完成以下問題:
(1)求二面角E-AC-D的余弦值;
(2)在棱PD上是否存在點M,使得?若存在,求的值;若不存在,說明理由.
【答案】(1)(2)在棱上存在點,使,且
【解析】
(1)取的中點,建立空間坐標系,分別求出平面和的法向量,再由二面角的向量公式即可求出;
(2)假設存在點,設出點的坐標,由三點共線得,,
可用表示出點,再利用,求出,滿足即可,即得的值.
(1)取的中點,連結,.因為底面為矩形,所以.因為,,所以∥,所以.
又因為平面PCD⊥平面ABCD,平面平面PCD∩平面ABCD=CD.
所以PO⊥平面ABCD,
如圖,建立空間直角坐標系,則,
設平面的法向量為,
所以令,則,所以.
平面的法向量為,則.
如圖可知二面角為鈍角,所以二面角的余弦值為.
(2)在棱上存在點,使.設,則.
因為,所以.
.因為,所以.
所以,解得.
所以在棱上存在點,使,且.
科目:高中數(shù)學 來源: 題型:
【題目】已知極坐標系的極點在平面直角坐標系的原點處,極軸與軸的非負半軸重合,且長度單位相同,直線的極坐標方程為,曲線(為參數(shù)).其中.
(1)試寫出直線的直角坐標方程及曲線的普通方程;
(2)若點為曲線上的動點,求點到直線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
(1)當a=b=1時,求函數(shù)f(x)的圖象在點(e2,f(e2))處的切線方程;
(2)當b=1時,若存在,使f(x1)≤f'(x2)+a成立,求實數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,首項a1=1,且a3+1是a2+1與a4+2的等比中項.
(1)求數(shù)列{an}的通項公式;
(2)設bn=,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線C:,O為坐標原點,F為C的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.若OMN為直角三角形,則|MN|=
A. B. 3 C. D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設不等式組表示的區(qū)域為A,不等式組表示的區(qū)域為B.
(1)在區(qū)域A中任取一點(x,y),求點(x,y)∈B的概率;
(2)若x、y分別表示甲、乙兩人各擲一次骰子所得的點數(shù),求點(x,y)在區(qū)域B中的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com