(本小題滿分12分)學(xué)科網(wǎng)已知直四棱柱ABCD—A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F為棱BB1學(xué)科網(wǎng) 的中點(diǎn),M為線段AC1的中點(diǎn).學(xué)科網(wǎng)
(1)求證:直線MF∥平面ABCD;學(xué)科網(wǎng)
(2)求證:平面AFC1⊥平面ACC1A1;學(xué)科網(wǎng)
(3)求平面AFC1與與平面ABCD所成二面角的大小.學(xué)科網(wǎng)
學(xué)科網(wǎng)
(1)略 (2)略(3)30°或150°
:解法一:
(1)延長C1F交CB的延長線于點(diǎn)N,連接AN。因?yàn)镕是BB1的中點(diǎn),
所以F為C1N的中點(diǎn),B為CN的中點(diǎn)。2分
又M是線段AC1的中點(diǎn),故MF∥AN!3分
又MF平面ABCD,AN平面ABCD。
∴MF∥平面ABCD!5分
(2)證明:連BD,由直四棱柱ABCD—A1B1C1D1可知A1A⊥平面ABCD,又∵BD平面ABCD,∴A1A⊥BD。∵四邊形ABCD為菱形,∴AC⊥BD。又∵AC∩A1A=A,AC,AA平面ACC1A1。∴BD⊥平面ACC1A1。··7分在四邊形DANB中,DA∥BN且DA=BN,所以四邊形DANB為平行四邊形 故NA∥BD,∴NA⊥平面ACC1A1,又因?yàn)?i>NA平面AFC1∴平面AFC1⊥ACC1A1
(3)由(2)知BD⊥ACC1A1,又AC1ACC1A1,∴BD⊥AC1,∴BD∥NA,
∴AC1⊥NA。又由BD⊥AC可知NA⊥AC, ∴∠C1AC就是平面AFC1與平面ABCD所成二面角的平面角或補(bǔ)角。10分在Rt△C1AC中,tan,故∠C1AC=30°
∴平面AFC1與平面ABCD所成二面角的大小為30°或150°!ぁぁ12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com