(本題滿分12分) 
已知a∈R,函數(shù)f(x)=4x3-2ax+a.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:當0≤x≤1時,f(x)+|2-a|>0.
(1)函數(shù)f(x)的單調(diào)遞增區(qū)間為
單調(diào)遞減區(qū)間為.(2)見解析。

試題分析:(1)根據(jù)函數(shù)的導數(shù)符號與函數(shù)單調(diào)性的關系來判定求解其單調(diào)區(qū)間。
(2)要證明不等式恒成立問題,那么要轉化為函數(shù)的最值問題來處理即可或者構造函數(shù)求解函數(shù)的 最小值大于零得到。
解:
(1)由題意得f′(x)=12x2-2a.
當a≤0時,f′(x)≥0恒成立,此時f(x)的單調(diào)遞增區(qū)間為(-∞,+∞).
當a>0 時,f′(x)=12,此時
函數(shù)f(x)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為.
(2)由于0≤x≤1,故
當a≤2時,f(x)+|a-2|=4x3-2ax+2≥4x3-4x+2.
當a>2時,f(x)+|a-2|=4x3+2a(1-x)-2≥4x3+4(1-x)-2=4x3-4x+2.
設g(x)=2x3-2x+1,0≤x≤1,則g′(x)=6x2-2=6,于是
 
x
 
0



 

 
-
0
+
 

1
減函數(shù)
極小值
增函數(shù)
1
所以g(x)min=g=1->0.
所以當0≤x≤1時,2x3-2x+1>0.
故f(x)+|a-2|≥4x3-4x+2>0.
點評:對于含有參數(shù)的二次不等式問題的求解是解決導數(shù)中常見的非常重要的,注意對于開口和判別式的情況進行分類討論得到結論。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)在R上可導,且,則的大小為(  )
A.B.
C.D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知處有極值,其圖象在處的切線與直線平行.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若時,恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù),,其中.
(I)求函數(shù)的導函數(shù)的最小值;
(II)當時,求函數(shù)的單調(diào)區(qū)間及極值;
(III)若對任意的,函數(shù)滿足,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是函數(shù)的一個極值點。
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若直線與函數(shù)的圖象有3個交點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的導函數(shù)的圖象大致是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
設函數(shù)
⑴當且函數(shù)在其定義域上為增函數(shù)時,求的取值范圍;
⑵若函數(shù)處取得極值,試用表示;
⑶在⑵的條件下,討論函數(shù)的單調(diào)性。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
設函數(shù),且,其中是自然對數(shù)的底數(shù).
(1)求的關系;
(2)若在其定義域內(nèi)為單調(diào)函數(shù),求的取值范圍;
(3)設,若在上至少存在一點,使得成立,求實數(shù)
取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為實數(shù),,的導函數(shù).
(Ⅰ)若,求上的最大值和最小值;
(Ⅱ)若上均單調(diào)遞增,求的取值范圍

查看答案和解析>>

同步練習冊答案