【題目】下列各組函數(shù)表示同一函數(shù)的是( )
A. 與y=x+3
B. 與y=x﹣1
C.y=x0(x≠0)與y=1(x≠0)
D.y=2x+1,x∈Z與y=2x﹣1,x∈Z
【答案】C
【解析】解:A. =x+3,(x≠3),兩個函數(shù)的定義域不相同.不是同一函數(shù).
B.y=|x|﹣1,兩個函數(shù)的對應(yīng)法則不相同.不是同一函數(shù).
C.y=x0=1(x≠0).兩個函數(shù)的定義域和對應(yīng)法則相同.是同一函數(shù).
兩個函數(shù)的定義域不相同.不是同一函數(shù).
D.兩個函數(shù)的對應(yīng)法則不相同.不是同一函數(shù).
故選:C.
【考點精析】根據(jù)題目的已知條件,利用判斷兩個函數(shù)是否為同一函數(shù)的相關(guān)知識可以得到問題的答案,需要掌握只有定義域和對應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中表示同一函數(shù)的是( )
A.y= 與y=( )4
B.y= 與y=
C.y= ?與y= ?
D.y= 與y=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在調(diào)查男女乘客是否暈機(jī)的情況中,已知男乘客暈機(jī)為28人,不會暈機(jī)的也是28人,而女乘客暈機(jī)為28人,不會暈機(jī)的為56人,
其中 為樣本容量。
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)根據(jù)以上數(shù)據(jù)建立一個 的列聯(lián)表;
(2)試判斷是否有95%的把握認(rèn)為是否暈機(jī)與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O、A、B三地在同一水平面內(nèi),A地在O地正東方向2km處,B地在O地正北方向2km處,某測繪隊員在A、B之間的直線公路上任選一點C作為測繪點,用測繪儀進(jìn)行測繪,O地為一磁場,距離其不超過km的范圍內(nèi)會測繪儀等電子儀器形成干擾,使測量結(jié)果不準(zhǔn)確,則該測繪隊員能夠得到準(zhǔn)確數(shù)據(jù)的概率是( )
A.1-
B.
C.1-
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范圍;
(2)在(1)的范圍內(nèi)求y=g(x)﹣f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是一位母親給兒子作的成長記錄:
年齡/周歲 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高/cm | 94.8 | 104.2 | 108.7 | 117.8 | 124.3 | 130.8 | 139.1 |
根據(jù)以上樣本數(shù)據(jù),她建立了身高 (cm)與年齡x(周歲)的線性回歸方程為 ,給出下列結(jié)論:
①y與x具有正的線性相關(guān)關(guān)系;
②回歸直線過樣本的中心點(42,117.1);
③兒子10歲時的身高是 cm;
④兒子年齡增加1周歲,身高約增加 cm.
其中,正確結(jié)論的個數(shù)是
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知海島A到海岸公路BC的距離AB=50km,B,C間的距離為100km,從A到C必須先坐船到BC上的某一點D,航速為25km/h,再乘汽車到C,車速為50km/h,記∠BDA=θ
(1)試將由A到C所用的時間t表示為θ的函數(shù)t(θ);
(2)問θ為多少時,由A到C所用的時間t最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線經(jīng)過曲線的左焦點.
(1)求直線的普通方程;
(2)設(shè)曲線的內(nèi)接矩形的周長為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信已成為人們常用的社交軟件,“微信運(yùn)動”是微信里由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.手機(jī)用戶可以通過關(guān)注“微信運(yùn)動”公眾號查看自己每天行走的步數(shù),同時也可以和好友進(jìn)行運(yùn)動量的或點贊.現(xiàn)從小明的微信朋友圈內(nèi)隨機(jī)選取了40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下表:
步數(shù) 性別 | 02000 | 20015000 | 50018000 | 800110000 | >10000 |
男 | 1 | 2 | 4 | 7 | 6 |
女 | 0 | 3 | 9 | 6 | 2 |
若某人一天的走路步數(shù)超過8000步被系統(tǒng)評定為“積極型”,否則被系統(tǒng)評定為“懈怠型”.
(1)利用樣本估計總體的思想,試估計小明的所有微信好友中每日走路步數(shù)超過10000步的概率;
(2)根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有90%的把握認(rèn)為“評定類型”與“性別”有關(guān)?
積極型 | 懈怠型 | 總計 | |
男 | |||
女 | |||
總計 |
附:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com