【題目】“”是“對任意的正數(shù), ”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
【答案】A
【解析】分析:根據(jù)基本不等式,我們可以判斷出“”?“對任意的正數(shù)x,2x+≥1”與“對任意的正數(shù)x,2x+≥1”?“a=
”真假,進(jìn)而根據(jù)充要條件的定義,即可得到結(jié)論.
解答:解:當(dāng)“a=”時,由基本不等式可得:
“對任意的正數(shù)x,2x+≥1”一定成立,
即“a=”?“對任意的正數(shù)x,2x+≥1”為真命題;
而“對任意的正數(shù)x,2x+≥1的”時,可得“a≥”
即“對任意的正數(shù)x,2x+≥1”?“a=”為假命題;
故“a=”是“對任意的正數(shù)x,2x+≥1的”充分不必要條件
故選A
【題型】單選題
【結(jié)束】
9
【題目】如圖是一幾何體的平面展開圖,其中為正方形, , 分別為, 的中點,在此幾何體中,給出下面四個結(jié)論:①直線與直線異面;②直線與直線異面;③直線平面;④平面平面.
其中一定正確的選項是( )
A. ①③ B. ②③ C. ②③④ D. ①③④
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是臨江公園內(nèi)一個等腰三角形形狀的小湖(假設(shè)湖岸是筆直的),其中兩腰米,.為了給市民營造良好的休閑環(huán)境,公園管理處決定在湖岸,上分別取點,(異于線段端點),在湖上修建一條筆直的水上觀光通道(寬度不計),使得三角形和四邊形的周長相等.
(1)若水上觀光通道的端點為線段的三等分點(靠近點),求此時水上觀光通道的長度;
(2)當(dāng)為多長時,觀光通道的長度最短?并求出其最短長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點,且圓心在x軸上。
(1)求直線PQ的方程;
(2)圓C的方程;
(3)若直線l∥PQ,且l與圓C交于點A,B,且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點,求直線l的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中, 為正三角形,平面平面, , , .
(Ⅰ)求證:平面平面;
(Ⅱ)求三棱錐的體積;
(Ⅲ)在棱上是否存在點,使得平面?若存在,請確定點的位置并證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司近年來科研費用支出萬元與公司所獲利潤萬元之間有如表的統(tǒng)計
數(shù)據(jù):參考公式:用最小二乘法求出關(guān)于的線性回歸方程為: ,
其中: , ,參考數(shù)值: 。
(Ⅰ)求出;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù)可知公司所獲利潤萬元與科研費用支出萬元線性相關(guān),請用最小二乘法求出關(guān)于的線性回歸方程;
(Ⅲ)試根據(jù)(Ⅱ)求出的線性回歸方程,預(yù)測該公司科研費用支出為10萬元時公司所獲得的利潤。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年一交警統(tǒng)計了某段路過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):
車速 | |||||
事故次數(shù) |
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測2017年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達(dá)到時,可能發(fā)生的交通事故次數(shù).
(參考數(shù)據(jù):)
[參考公式:]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面, , , , 分別為, 的中點,點在線段上.
(1)求證: 平面;
(2)如果三棱錐的體積為,求點到面的距離.
【答案】(1)證明見解析;(2).
【解析】試題分析:
(1)在平行四邊形中,得出,進(jìn)而得到,證得底面,得出,進(jìn)而證得平面.
(2)由到面的距離為,所以面, 為中點,即可求解的值.
試題解析:
證明:(1)在平行四邊形中,因為, ,
所以,由, 分別為, 的中點,得,所以.
側(cè)面底面,且, 底面.
又因為底面,所以.
又因為, 平面, 平面,
所以平面.
解:(2)到面的距離為1,所以面, 為中點, .
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)求函數(shù)的極值;
(3)若函數(shù)在區(qū)間上是增函數(shù),試確定的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸之間滿足關(guān)系式為大于的常數(shù)),現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:
對數(shù)據(jù)作了處理,相關(guān)統(tǒng)計量的值如下表:
(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程(提示:由已知, 是的線性關(guān)系);
(2)按照某項指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品,現(xiàn)從抽取的6件合格產(chǎn)品再任選3件,求恰好取得兩件優(yōu)等品的概率;
(附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為 )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為的正方體中,為的中點,為上任意一點,,為上任意兩點,且的長為定值,則下面的四個值中不為定值的是( )
A. 點到平面的距離B. 三棱錐的體積
C. 直線與平面所成的角D. 二面角的大小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com