如圖所示,已知△OFQ的面積為S,且
OF
FQ
=1,設(shè)|
OF
|=c,S=
14
4
c,若以O(shè)為中心,F(xiàn)為焦點(diǎn)的雙曲線經(jīng)過點(diǎn)Q,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求|
OQ
|最小時(shí)此雙曲線的方程.
考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:以O(shè)為原點(diǎn),OF所在直線為x軸建立直角坐標(biāo)系,并令Q(m,n),則F(c,0),由題設(shè)知
OF
FQ
=c(m-c)=1.m=c+
1
c
,Q(c+
1
c
,
14
2
).由此知|
OQ
|2=(c+
1
c
2+
7
2
,由此入手,當(dāng)||
OQ
|取最小值時(shí),能夠求出雙曲線的方程.
解答: 解:以O(shè)為原點(diǎn),OF所在直線為x軸建立直角坐標(biāo)系,
|
OF
|=c

∴F(c,0),
并令Q(m,n),
則S=
14
4
c=
1
2
cn,
∴n=
14
2

OF
=(c,0),
FQ
=(m-c,n)=(m-c,
14
2
),
OF
FQ
=c(m-c)=1.
∴m=c+
1
c
,
∴Q(c+
1
c
14
2
).
∴|
OQ
|2=(c+
1
c
2+
7
2
,
∵c+
1
c
≥2,當(dāng)且僅當(dāng)c=1時(shí),|
OQ
|2取最小值
15
2
,即|
OQ
|取最小時(shí)
此時(shí)Q(2,
14
2
),
設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1
,
a2+b2=1
4
a2
-
7
2
b2
=1
,
∴a2=
1
2
,b2=
1
2

∴所求雙曲線的方程為
x2
1
2
-
y2
1
2
=1
點(diǎn)評(píng):本題考查圓錐曲線的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意積累解題方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)A(1,0),B(2,
3

(1)求直線l的傾斜角;
(2)若點(diǎn)P在y軸上,并且△PAB的面積為
3
,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別為雙曲線C:
x2
9
-
y2
4
=1
的左、右焦點(diǎn),P,Q為C上的點(diǎn),且滿足條件:①線段PQ的長(zhǎng)度是虛軸長(zhǎng)的2倍;②線段PQ經(jīng)過F2,則△PQF1的周長(zhǎng)為
 
.若滿足條件②,則△PQF1的周長(zhǎng)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程是y=
3
x,它與橢圓
x2
36
+
y2
20
=1有相同的焦點(diǎn),則雙曲線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=2lnx-ax單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱中ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O為AC中點(diǎn).則直線A1C與平面A1AB所成角的正弦值是( 。
A、
21
7
B、
2
7
7
C、
21
14
D、
5
7
14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在單位正方形內(nèi)隨機(jī)取一點(diǎn)P,則在如圖陰影部分的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足下列三個(gè)條件:
①對(duì)任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,且x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立
則稱函數(shù)f(x)為“友誼函數(shù)”.
(1)已知f(x)是“友誼函數(shù)”,求f(0)的值;
(2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否是“友誼函數(shù)”?說明你的理由.
(3)已知f(x)是“友誼函數(shù)”,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0
求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,三棱柱A1B1C1-ABC的底面是邊長(zhǎng)為1的正三角形,側(cè)棱A1A⊥底面ABC且A1A=2,M、N分別為AA1、BC的中點(diǎn).
(1)求證:MN∥平面A1BC1;
(2)求直線MN與BC1所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案