在直角坐標系xOy中,曲線C1的參數(shù)方程為
x=2cosα
y=2+2sinα
(α為參數(shù))M是C1上的動點,P點滿足
OP
=2
OM
,P點的軌跡為曲線C2
(Ⅰ)求C2的方程;
(Ⅱ)在以O(shè)為極點,x 軸的正半軸為極軸的極坐標系中,射線θ=
π
3
與C1的異于極點的交點為A,與C2的異于極點的交點為B,求|AB|.
分析:(I)先設(shè)出點P的坐標,然后根據(jù)點P滿足的條件代入曲線C1的方程即可求出曲線C2的方程;
(II)根據(jù)(I)將求出曲線C1的極坐標方程,分別求出射線θ=
π
3
與C1的交點A的極徑為ρ1,以及射線θ=
π
3
與C2的交點B的極徑為ρ2,最后根據(jù)|AB|=|ρ21|求出所求.
解答:解:(I)設(shè)P(x,y),則由條件知M(
x
2
,
y
2
).由于M點在C1上,
所以
x
2
=2cosα
y
2
=2+2sinα
x=4cosα
y=4+4sinα

從而C2的參數(shù)方程為
x=4cosα
y=4+4sinα
(α為參數(shù))
(Ⅱ)曲線C1的極坐標方程為ρ=4sinθ,曲線C2的極坐標方程為ρ=8sinθ.
射線θ=
π
3
與C1的交點A的極徑為ρ1=4sin
π
3

射線θ=
π
3
與C2的交點B的極徑為ρ2=8sin
π
3

所以|AB|=|ρ21|=2
3
點評:本題考查點的極坐標和直角坐標的互化,以及軌跡方程的求解和線段的度量,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點,點M為C1與C2在第一象限的交點,且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的點N滿足
MN
=
MF1
+
MF2
,直線l∥MN,且與C1交于A,B兩點,若
OA
OB
=0
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,已知點P(2cosx+1,2cos2x+2)和點Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動點P在射線OA上運動,動點Q在y軸的正半軸上運動,△POQ的面積為2
3

(1)求線段PQ中點M的軌跡C的方程;
(2)R1,R2是曲線C上的動點,R1,R2到y(tǒng)軸的距離之和為1,設(shè)u為R1,R2到x軸的距離之積.問:是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
x=tcosθ
y=1+tsinθ
(t
為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說明它表示什么曲線;
(II)求直線l被軌跡C截得的最大弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關(guān)于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案