【題目】一個(gè)盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取50個(gè)作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為[5,15](15,25],(25,35],(3545],由此得到樣本的重量頻率分布直方圖(如圖).

1)求的值;

2)從盒子中隨機(jī)抽取3個(gè)小球,其中重量在[5,15]內(nèi)的小球個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望. (以直方圖中的頻率作為概率).

【答案】1;(2)分布列見(jiàn)解析,期望為

【解析】試題分析:(1)由頻率分布直方圖知,所有小矩形面積(頻率)之和為1,可求得;(2)由統(tǒng)計(jì)的知識(shí),可知小球重量在內(nèi)的概率為,因此隨機(jī)變量,利用二項(xiàng)分布概率公式可計(jì)算出所有概率,從而得概率分布表,再由期望公式可計(jì)算期望.

試題解析:(1)由題意,得,解得

2)利用樣本估計(jì)總體,該盒子中小球重量在內(nèi)的概率為,

.的可能取值為、、、,

,,

,.

的分布列為:

.(或者).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)二次函數(shù)f(x)滿足:對(duì)任意x∈R,都有f(x+1)+f(x)=2x2﹣2x﹣3
(1)求f(x)的解析式;
(2)若關(guān)于x的方程f(x)=a有兩個(gè)實(shí)數(shù)根x1 , x2 , 且滿足:﹣1<x1<2<x2 , 求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式|x﹣3|+|x﹣4|<2a.
(1)若a=1,求不等式的解集;
(2)若已知不等式有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù) 是偶函數(shù),若h(2x﹣1)≤h(b),則x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】濟(jì)南市開(kāi)展支教活動(dòng),有五名教師被隨機(jī)的分到A、B、C三個(gè)不同的鄉(xiāng)鎮(zhèn)中學(xué),且每個(gè)鄉(xiāng)鎮(zhèn)中學(xué)至少一名教師,
(1)求甲乙兩名教師同時(shí)分到一個(gè)中學(xué)的概率;
(2)求A中學(xué)分到兩名教師的概率;
(3)設(shè)隨機(jī)變量X為這五名教師分到A中學(xué)的人數(shù),求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種植基地將編號(hào)分別為1,2,3,4,5,6的六個(gè)不同品種的馬鈴薯種在如圖所示的

A

B

C

D

E

F

這六塊實(shí)驗(yàn)田上進(jìn)行對(duì)比試驗(yàn),要求這六塊實(shí)驗(yàn)田分別種植不同品種的馬鈴薯,若種植時(shí)要求編號(hào)1,3,5的三個(gè)品種的馬鈴薯中至少有兩個(gè)相鄰,且2號(hào)品種的馬鈴薯不能種植在A、F這兩塊實(shí)驗(yàn)田上,則不同的種植方法有 ( )

A. 360種 B. 432種 C. 456種 D. 480種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,E是BC的中點(diǎn),F(xiàn)是棱CD上的動(dòng)點(diǎn),G為C1D1的中點(diǎn),H為A1G的中點(diǎn).

(1)當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),求證:EF⊥AH;
(2)設(shè)二面角C1﹣EF﹣C的大小為θ,試確定點(diǎn)F的位置,使得sin θ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)椋?,+∞)的函數(shù)f(x)滿足:
①x>1時(shí),f(x)<0;
②f( )=1;
③對(duì)任意的正實(shí)數(shù)x,y,都有f(xy)=f(x)+f(y).
(1)求證:f( )=﹣f(x);
(2)求證:f(x)在定義域內(nèi)為減函數(shù);
(3)求滿足不等式f(log0.5m+3)+f(2log0.5m﹣1)≥﹣2的m集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求值
(1)已知f(3x)=xlg9,求f(2)+f(5)的值;
(2)若3a=5b=A(ab≠0),且 =2,求A的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案