(2013•豐臺(tái)區(qū)二模)在平面區(qū)域
0≤x≤2
0≤y≤2
內(nèi)任取一點(diǎn)P(x,y),若(x,y)滿足x+y≤b的概率大于
1
8
,則b的取值范圍是( 。
分析:本題屬于幾何概型,利用“測(cè)度”求概率,本例的測(cè)度即為區(qū)域的面積,故只要求出題中兩個(gè)區(qū)域:由不等式組表示的區(qū)域 和滿足x+y≤b的點(diǎn)構(gòu)成的區(qū)域的面積后再求它們的比值,最后利用此比值大于
1
8
即可得到b的取值范圍.
解答:解:其構(gòu)成的區(qū)域D如圖所示的邊長(zhǎng)為2的正方形,面積為S1=4,
滿足x+y≤b所表示的平面區(qū)域是以原點(diǎn)為直角坐標(biāo)頂點(diǎn),以b為直角邊長(zhǎng)的等腰直角三角形,其面積為S2=
1
2
×b2
∴在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)滿足x+y≤b的概率P=
b2
2
4
=
b2
8
,
由題意得:
b2
8
1
8
,∴b>1.
故選D.
點(diǎn)評(píng):本題考查幾何概型,幾何概型的概率的值是通過長(zhǎng)度、面積、和體積、的比值得到,本題是通過兩個(gè)圖形的面積之比得到概率的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•豐臺(tái)區(qū)二模)已知偶函數(shù)f(x)(x∈R),當(dāng)x∈(-2,0]時(shí),f(x)=-x(2+x),當(dāng)x∈[2,+∞)時(shí),f(x)=(x-2)(a-x)(a∈R).
關(guān)于偶函數(shù)f(x)的圖象G和直線l:y=m(m∈R)的3個(gè)命題如下:
①當(dāng)a=2,m=0時(shí),直線l與圖象G恰有3個(gè)公共點(diǎn);
②當(dāng)a=3,m=
1
4
時(shí),直線l與圖象G恰有6個(gè)公共點(diǎn);
③?m∈(1,+∞),?a∈(4,+∞),使得直線l與圖象G交于4個(gè)點(diǎn),且相鄰點(diǎn)之間的距離相等.
其中正確命題的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•豐臺(tái)區(qū)二模)若函數(shù)f(x)=ax(a>0,a≠1)在[-2,1]上的最大值為4,最小值為m,則m的值是
1
16
1
2
1
16
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•豐臺(tái)區(qū)二模)已知橢圓C:
x2
4
+y2=1
的短軸的端點(diǎn)分別為A,B,直線AM,BM分別與橢圓C交于E,F(xiàn)兩點(diǎn),其中點(diǎn)M (m,
1
2
) 滿足m≠0,且m≠±
3

(Ⅰ)求橢圓C的離心率e;
(Ⅱ)用m表示點(diǎn)E,F(xiàn)的坐標(biāo);
(Ⅲ)若△BME面積是△AMF面積的5倍,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•豐臺(tái)區(qū)二模)已知偶函數(shù)f(x)(x∈R),當(dāng)x∈(-2,0]時(shí),f(x)=-x(2+x),當(dāng)x∈[2,+∞)時(shí),f(x)=(x-2)(a-x)(a∈R).
關(guān)于偶函數(shù)f(x)的圖象G和直線l:y=m(m∈R)的3個(gè)命題如下:
①當(dāng)a=4時(shí),存在直線l與圖象G恰有5個(gè)公共點(diǎn);
②若對(duì)于?m∈[0,1],直線l與圖象G的公共點(diǎn)不超過4個(gè),則a≤2;
③?m∈(1,+∞),?a∈(4,+∞),使得直線l與圖象G交于4個(gè)點(diǎn),且相鄰點(diǎn)之間的距離相等.
其中正確命題的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•豐臺(tái)區(qū)二模)下列四個(gè)函數(shù)中,最小正周期為π,且圖象關(guān)于直線x=
π
12
對(duì)稱的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案