(本小題滿分12分)
已知函數(shù)是奇函數(shù):
(1)求實數(shù)和的值;
(2)證明在區(qū)間上的單調(diào)遞減
(3)已知且不等式對任意的恒成立,求實數(shù)的取值范圍.
(1);(2)見解析;(3).
【解析】
試題分析:(Ⅰ)先根據(jù)f(1)=f(4)求出b的值;再結(jié)合f(x)+f(-x)=0對x≠0恒成立求出a的值即可;
(Ⅱ)直接按照單調(diào)性的證明過程來證即可;
(Ⅲ)先結(jié)合第二問的結(jié)論知道函數(shù)f(x)在(1,+∞)上遞減,進而得到函數(shù)的不等式,最后把兩個成立的范圍相結(jié)合即可求出結(jié)論.
(1)由定義易得:
(2)設(shè),
即所以在上的單調(diào)遞減。
(3)已知且不等式對任意的恒成立,求實數(shù)的取值范圍.
由及為奇函數(shù)得:
因為,,且在區(qū)間上的單調(diào)遞減,
故任意的恒成立,故.
考點:本題主要是考查函數(shù)奇偶性與單調(diào)性的綜合.
點評:解決第一問的關(guān)鍵在于利用奇函數(shù)的定義得到f(x)+f(-x)=0對x≠0恒成立求出a的值.
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com