函數(shù)y=f(x)的圖象如圖所示,則y=f(x)的解析式為(  )
A.y=sin2x-2B.y=2cos3x-1
C.y=sin(2x-
π
5
)-1
D.y=1-sin(2x-
π
5
)

由已知中函數(shù)的解析式,我們可得函數(shù)的最大值為2,最小值為0,
而A中函數(shù)y=sin2x-2,最大值為-1,最小值為-3,不滿足要求,故A不正確;
B中函數(shù)y=2cos3x-1,最大值為1,最小值為-3,不滿足要求,故B不正確;
C中函數(shù)y=sin(2x-
π
5
)-1
,最大值為0,最小值為-2,不滿足要求,故C不正確;
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將函數(shù)f(x)=2sin(2x-θ)-3的圖象F向右平移
π
6
,再向上平移3個單位,得到圖象F′,若F′的一條對稱軸方程是x=
π
4
,則θ的一個可能。ā 。
A.-
π
6
B.-
π
3
C.
π
2
D.
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=(1-
1
x2
)sinx
的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=sin(
π
3
-x)
,則要得到其導(dǎo)函數(shù)y=f′(x)的圖象,只需將函數(shù)y=f(x)的圖象( 。
A.向左平移
3
個單位
B.向右平移
3
個單位
C.向左平移
π
2
個單位
D.向右平移
π
2
個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

要得到函數(shù)y=sin2x的圖象,可由函數(shù)y=sin(2x-
π
3
)
的圖象按下列哪種變換而得到( 。
A.向左平移
π
6
個單位
B.向左平移
π
3
個單位
C.向右平移
π
6
個單位
D.向右平移
π
3
個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=sin(ωx+
π
6
)
的導(dǎo)函數(shù)y=f'(x)的部分圖象如圖所示:圖象與y軸交點P(0,
3
3
2
)
,與x軸正半軸的兩交點為A、C,B為圖象的最低點,則S△ABC=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)x∈R,函數(shù)f(x)=cos(ωx+ϕ)(ω>0,-
π
2
<ϕ<0
)的最小正周期為π,且f(
π
4
)=
3
2

(Ⅰ)求ω和ϕ的值;
(Ⅱ)在給定坐標(biāo)系中作出函數(shù)f(x)在[0,π]上的圖象;
(Ⅲ)若f(x)>
2
2
,求x
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=Asin(ωx+
π
6
)(x∈R,A>0,ω>0)的最小正周期為T=6π,且f(2π)=2
(1)求ω和A的值;
(2)設(shè)α,β∈[0,
π
2
],f(3α+π)=
16
5
,f(3β+
2
)=-
20
13
;求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的最小正周期是    B                          
A.B.πC.2πD.π+1

查看答案和解析>>

同步練習(xí)冊答案