(本小題滿分12分)
設(shè),點(diǎn)P(,0)是函數(shù)的圖象的一個(gè)公共點(diǎn),兩函數(shù)的圖象在點(diǎn)P處有相同的切線.
(1)用表示a,b,c;
(2)若函數(shù)在(-1,3)上單調(diào)遞減,求的取值范圍.

(1),,(2)

解析試題分析:(I)因?yàn)楹瘮?shù),的圖象都過(guò)點(diǎn)(,0),所以,
.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4e/e/1hk054.png" style="vertical-align:middle;" />所以. ---2分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/dc/5/gimep4.png" style="vertical-align:middle;" />,在點(diǎn)(,0)處有相同的切線,所以
   --------4分
代入上式得 因此,,---6分
(II).---7分
當(dāng)時(shí),函數(shù)單調(diào)遞減.
,若;若 -------9分
由題意,函數(shù)在(-1,3)上單調(diào)遞減,則
所以---11分
所以的取值范圍為 ----12分
考點(diǎn):導(dǎo)數(shù)的幾何意義;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。
點(diǎn)評(píng):利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,實(shí)質(zhì)上就是求導(dǎo)數(shù)>0或?qū)?shù)<0的解集,這樣問題就轉(zhuǎn)化為了解不等式,尤其是解含參不等式更為常見。此題是導(dǎo)數(shù)中的典型題型,我們要熟練掌握。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

文科設(shè)函數(shù)。(Ⅰ)若函數(shù)處與直線相切,①求實(shí)數(shù),b的值;②求函數(shù)上的最大值;(Ⅱ)當(dāng)時(shí),若不等式對(duì)所有的都成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)其中,曲線在點(diǎn)處的切線垂直于軸.
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實(shí)數(shù)a的值組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x1、x2.試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分為12分)
已知函數(shù)的圖像過(guò)坐標(biāo)原點(diǎn),且在點(diǎn)處的切線的斜率是
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在軸上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分l2分)
已知函數(shù)
(1)若,求函數(shù)的極小值;
(2)設(shè)函數(shù),試問:在定義域內(nèi)是否存在三個(gè)不同的自變量使得的值相等,若存在,請(qǐng)求出的范圍,若不存在,請(qǐng)說(shuō)明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=ln+mx2(m∈R)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若A,B是函數(shù)f(x)圖象上不同的兩點(diǎn),且直線AB的斜率恒大于1,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
設(shè)點(diǎn)P在曲線上,從原點(diǎn)向A(2,4)移動(dòng),如果直線OP,曲線及直線x=2所圍成的面積分別記為、

(Ⅰ)當(dāng)時(shí),求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)有最小值時(shí),求點(diǎn)P的坐標(biāo)和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分16分)
已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)處的切線方程;
(2)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(3)已知,如果存在,使得函數(shù)處取得最小值,試求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案