已知分別是橢圓的左、右焦點(diǎn).
(1)若是第一象限內(nèi)該橢圓上的一點(diǎn),,求點(diǎn)的坐標(biāo);
(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且為銳角(其
為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
(1)點(diǎn)的坐標(biāo)為;(2)直線的斜率的取值范圍是.

試題分析:(1)設(shè),由橢圓方程可表示出,又,即可求點(diǎn)的坐標(biāo);
(2)顯然不滿足題意,所直線的斜率存在,可設(shè)的方程為,與橢圓方程聯(lián)立后用韋達(dá)定理表示出;又為銳角,,進(jìn)而可解出的取值范圍.
試題解析:(1)因?yàn)闄E圓方程為,知,
設(shè),則
,聯(lián)立,解得         6分
(2)顯然不滿足題意,所直線的斜率存在,可設(shè)的方程為
設(shè),聯(lián)立
,                          8分
且△                       10分
為銳角,,,

,,              12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖;.已知橢圓C:的離心率為,以橢圓的左頂點(diǎn)T為圓心作圓T:設(shè)圓T與橢圓C交于點(diǎn)MN.

(1)求橢圓C的方程;
(2)求的最小值,并求此時圓T的方程;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn). 試問;是否存在使最大的點(diǎn)P,若存在求出P點(diǎn)的坐標(biāo),若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓C:+y2=1(a>1)的上頂點(diǎn)為A,離心率為,若不過點(diǎn)A的動直線l與橢圓C相交于P,Q兩點(diǎn),且·=0.

(1)求橢圓C的方程.
(2)求證:直線l過定點(diǎn),并求出該定點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率相等. 直線與曲線交于兩點(diǎn)(的左側(cè)),與曲線交于兩點(diǎn)(的左側(cè)),為坐標(biāo)原點(diǎn),
(1)當(dāng)=,時,求橢圓的方程;
(2)若,且相似,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A在橢圓C上,·=0,3||·||=-5·,||=2,過點(diǎn)F2且與坐標(biāo)軸不垂直的直線交橢圓于P,Q兩點(diǎn).
(1)求橢圓C的方程;
(2)線段OF2(O為坐標(biāo)原點(diǎn))上是否存在點(diǎn)M(m,0),使得··?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓過點(diǎn),離心率為.
(1)求橢圓的方程;
(2)求過點(diǎn)且斜率為的直線被橢圓所截得線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)P(0,-1)是橢圓C1=1(a>b>0)的一個頂點(diǎn),C1的長軸是圓C2x2y2=4的直徑.l1,l2是過點(diǎn)P且互相垂直的兩條直線,其中l1交圓C2AB兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.

(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓C的焦點(diǎn)在軸上,焦距為2,直線n:x-y-1=0與橢圓C交于A、B兩點(diǎn),F(xiàn)1是左焦點(diǎn),且,則橢圓C的標(biāo)準(zhǔn)方程是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線上一點(diǎn)P到y(tǒng)軸的距離為6,則點(diǎn)P到焦點(diǎn)的距離為(    )
A.7B.8C.9D.10

查看答案和解析>>

同步練習(xí)冊答案