如圖是一個(gè)算法流程圖,則輸出的x的值為
 

考點(diǎn):程序框圖
專題:圖表型,算法和程序框圖
分析:模擬執(zhí)行算法流程,依次寫出每次循環(huán)得到的x,n的值,當(dāng)n=6時(shí),滿足條件n>5,退出循環(huán),輸出x的值為
1
6
解答: 解:模擬執(zhí)行算法流程,可得
n=1,x=1
x=
1
2
,n=2
不滿足條件n>5,x=
1
3
,n=3
不滿足條件n>5,x=
1
4
,n=4
不滿足條件n>5,x=
1
5
,n=5
不滿足條件n>5,x=
1
6
,n=6
滿足條件n>5,退出循環(huán),輸出x的值為
1
6

故答案為:
1
6
點(diǎn)評:本題主要考查了程序算法和流程圖的應(yīng)用,模擬執(zhí)行算法流程,依次寫出每次循環(huán)得到的x,n的值是解題的關(guān)鍵,屬于基本知識(shí)的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=3an+k•3n+1(k是與n無關(guān)的常數(shù)且k≠0),設(shè)bn=
an
3n

(1)證明數(shù)列{bn}是等差數(shù)列;
(2)若數(shù)列{an}是單調(diào)遞減數(shù)列,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|2x+1|+|x-a|(a∈R).
(1)當(dāng)a=2時(shí),求不等式f(x)≤4;
(2)當(dāng)a<-
1
2
時(shí),若存在x≤-
1
2
使得f(x)+x≤3成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
的夾角為120°,且|
a
|=1,|2
a
+
b
|=2
3
,則|
b
|=( 。
A、3
2
B、2
2
C、4
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的b=(  )
A、7B、9C、11D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lg
1-mx
x-1
是奇函數(shù)
(1)求m的值及函數(shù)f(x)的定義域;
(2)根據(jù)(1)的結(jié)果判定f(x)在區(qū)間(1,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程lg(x2+ax)=1在x∈[1,5]上有解,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于|q|<1(q為公比)的無窮等比數(shù)列{an}(即項(xiàng)數(shù)是無窮項(xiàng)),我們定義
lim
n→∞
Sn(其中Sn是數(shù)列{an}的前n項(xiàng)的和)為它的各項(xiàng)的和,記為S,即S=
lim
n→∞
Sn=
a1
1-q
,則循環(huán)小數(shù)0.
7
2
的分?jǐn)?shù)形式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+φ)+
3
cos(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期為π,且滿足f(-x)=f(x),則函數(shù)f(x)的單調(diào)增區(qū)間為
 

查看答案和解析>>

同步練習(xí)冊答案