如圖一個同心圓形花壇,分為兩部分,中間小圓部分種植草坪和綠色灌木,周圍的圓環(huán)分為n(n≥3,n∈N)等份,種植紅、黃、藍三色不同的花,要求相鄰兩部分種植不同顏色的花.如圖所示圓環(huán)分成的n等份為a1,a2,a3,…,an,有多少不同的種植方法( 。
分析:法1:由題意知圓環(huán)分為n等份,做法同前兩種情況類似,對a1有3種不同的種法,對a2、a3、、an都有兩種不同的種法,但這樣的種法只能保證a1與ai(i=2、3、、n-1)不同顏色,但不能保證a1與an不同顏色.在這種情況下要分類,一類是an與a1不同色的種法,另一類是an與a1同色的種法,根據(jù)分類計數(shù)原理得到結(jié)果;
法2:特值法,令n=3,易得此時的種法,依次計算選項的值,驗證可得答案.
解答:解:法1:圓環(huán)分為n等份,對a1有3種不同的種法,對a2、a3、、an都有兩種不同的種法,
但這樣的種法只能保證a1與ai(i=2、3、、n-1)不同顏色,但不能保證a1與an不同顏色.
于是一類是an與a1不同色的種法,這是符合要求的種法,記為S(n)(n≥3)種.
另一類是an與a1同色的種法,這時把an與a1看成一部分,相當于對n-1部分符合要求的種法,記為S(n-1).
共有3×2n-1種種法.
這樣就有S(n)+S(n-1)=3×2n-1
即S(n)-2n=-[S(n-1)-2n-1],則數(shù)列{S(n)-2n}(n≥3)是首項為S(3)-23公比為-1的等比數(shù)列.
則S(n)-2n=[S(3)-23](-1)n-3(n≥3).
由(1)知:S(3)=6
∴S(n)-2n+(6-8)(-1)n-3
∴S(n)=2n-2•(-1)n-3
法2:特值法
令n=3,易得此時的種法有A33=6種,
依次計算選項的值,驗證可得A符合,
故選A,
點評:本題考查的是排列問題,把排列問題包含在實際問題中,解題的關(guān)鍵是看清題目的實質(zhì),把實際問題轉(zhuǎn)化為數(shù)學問題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

21、一個同心圓形花壇,分為兩部分,中間小圓部分種植草坪和綠色灌木,周圍的圓環(huán)分為n(n≥3,n∈N)等份,種植紅、黃、藍三色不同的花,要求相鄰兩部分種植不同顏色的花.
(1)如圖1,圓環(huán)分成的3等份為a1,a2,a3,有多少不同的種植方法?如圖2,圓環(huán)分成的4等份為a1,a2,a3,a4,有多少不同的種植方法?
(2)圖3,圓環(huán)分成的n等份為a1,a2,a33,…,an,有多少不同的種植方法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•武昌區(qū)模擬)為美化環(huán)境,某地決定在一個大型廣場建一個同心圓形花壇,花壇分為兩部分,中間小圓部分種植草坪,周圍的圓環(huán)分為n(n≥3,n∈N)等份種植紅、黃、藍三色不同的花.要求相鄰兩部分種植不同顏色的花.如圖①,圓環(huán)分成的3等份分別為a1,a2,a3,有6種不同的種植方法.

(1)如圖②,圓環(huán)分成的4等份分別為 a1,a2,a3,a4,有
18
18
種不同的種植方法;
(2)如圖③,圓環(huán)分成的n(n≥3,n∈N)等份分別為a1,a2,a3,…,an,有
2n-2•(-1)n-3(n≥3且n∈N)
2n-2•(-1)n-3(n≥3且n∈N)
種不同的種植方法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

如圖一個同心圓形花壇,分為兩部分,中間小圓部分種植草坪和綠色灌木,周圍的圓環(huán)分為n(n≥3,n∈N)等份,種植紅、黃、藍三色不同的花,要求相鄰兩部分種植不同顏色的花.如圖所示圓環(huán)分成的n等份為a1,a2,a3,…,an,有多少不同的種植方法


  1. A.
    2n-2•(-1)n-3種(n≥3)
  2. B.
    2n-2•(-1)n-2種(n≥3)
  3. C.
    2n+1-2•(-1)n-3種(n≥3)
  4. D.
    2n-1-2•(-1)n-3種(n≥3)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年四川省成都七中高考數(shù)學模擬最后一卷(理科)(解析版) 題型:選擇題

如圖一個同心圓形花壇,分為兩部分,中間小圓部分種植草坪和綠色灌木,周圍的圓環(huán)分為n(n≥3,n∈N)等份,種植紅、黃、藍三色不同的花,要求相鄰兩部分種植不同顏色的花.如圖所示圓環(huán)分成的n等份為a1,a2,a3,…,an,有多少不同的種植方法( )

A.2n-2•(-1)n-3種(n≥3)
B.2n-2•(-1)n-2種(n≥3)
C.2n+1-2•(-1)n-3種(n≥3)
D.2n-1-2•(-1)n-3種(n≥3)

查看答案和解析>>

同步練習冊答案