已知拋物線上有一點(diǎn)到焦點(diǎn)的距離為.
(1)求的值.
(2)如圖,設(shè)直線與拋物線交于兩點(diǎn),且,過(guò)弦的中點(diǎn)作垂直于軸的直線與拋物線交于點(diǎn),連接.試判斷的面積是否為定值?若是,求出定值;否則,請(qǐng)說(shuō)明理由.

(1),;(2)是,.

解析試題分析:(1)由拋物線定義得,,求,從而拋物線方程確定,將點(diǎn)代入拋物線方程,可確定;(2)將拋物線方程與直線方程聯(lián)立,得,由已知,得關(guān)于的等式,由已知條件的面積可表示為,再結(jié)合,可證明其值等于
(1)焦點(diǎn),.∴,代入,得
(2)聯(lián)立,得,,即,
,,∴,,∴的面積
考點(diǎn):1、拋物線的定義;2、直線和拋物線的位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),分別是橢圓的左右焦點(diǎn),M是C上一點(diǎn)且與x軸垂直,直線與C的另一個(gè)交點(diǎn)為N.
(1)若直線MN的斜率為,求C的離心率;
(2)若直線MN在y軸上的截距為2,且,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(14分)(2011•湖北)平面內(nèi)與兩定點(diǎn)A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上A1、A2兩點(diǎn)所成的曲線C可以是圓、橢圓成雙曲線.
(Ⅰ)求曲線C的方程,并討論C的形狀與m值的關(guān)系;
(Ⅱ)當(dāng)m=﹣1時(shí),對(duì)應(yīng)的曲線為C1;對(duì)給定的m∈(﹣1,0)∪(0,+∞),對(duì)應(yīng)的曲線為C2,設(shè)F1、F2是C2的兩個(gè)焦點(diǎn).試問(wèn):在C1上,是否存在點(diǎn)N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)分別是橢圓的 左,右焦點(diǎn)。
(1)若P是該橢圓上一個(gè)動(dòng)點(diǎn),求的 最大值和最小值。
(2)設(shè)過(guò)定點(diǎn)M(0,2)的 直線l與橢圓交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)的坐標(biāo)分別為,.直線相交于點(diǎn),且它們的斜率之積是,記動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)是曲線上的動(dòng)點(diǎn),直線,分別交直線于點(diǎn),線段的中點(diǎn)為,求直線與直線的斜率之積的取值范圍;
(3)在(2)的條件下,記直線的交點(diǎn)為,試探究點(diǎn)與曲線的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C過(guò)點(diǎn),兩焦點(diǎn)為、是坐標(biāo)原點(diǎn),不經(jīng)過(guò)原點(diǎn)的直線與該橢圓交于兩個(gè)不同點(diǎn)、,且直線、的斜率依次成等比數(shù)列.
(1)求橢圓C的方程;       
(2)求直線的斜率;
(3)求面積的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2012•廣東)在平面直角坐標(biāo)系xOy中,已知橢圓C:的離心率,且橢圓C上的點(diǎn)到點(diǎn)Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xoy中,已知橢圓C1的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(0,1)在C1上。
(1)求橢圓C1的方程;
(2)設(shè)直線l同時(shí)與橢圓C1和拋物線C2相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,有一個(gè)頂點(diǎn)為,
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作直線與橢圓交于兩點(diǎn),線段的中點(diǎn)為,求直線的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案