【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學屆的震動。在1859年的時候,德國數(shù)學家黎曼向科學院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想。在此之前,著名數(shù)學家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結(jié)論。若根據(jù)歐拉得出的結(jié)論,估計1000以內(nèi)的素數(shù)的個數(shù)為_________(素數(shù)即質(zhì)數(shù),,計算結(jié)果取整數(shù))

A. 768 B. 144 C. 767 D. 145

【答案】D

【解析】

由題意,根據(jù),得到估計1000以內(nèi)的素數(shù)的個數(shù)為為,根據(jù)對數(shù)的運算,即可求解.

由題意,小于數(shù)字的素數(shù)個數(shù)大約可以表示為,則估計1000以內(nèi)的素數(shù)的個數(shù)為為,故選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】正方體的直觀圖如圖所示:

1)判斷平面與平面的位置關系,并證明你的結(jié)論.

2)證明:直線平面.

3)若,求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則的取值范圍為( 。

A. (﹣1,+∞)B. (﹣1,1]C. (﹣∞,1)D. [﹣1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學參加數(shù)學應用知識競賽培訓,現(xiàn)分別從他們在培訓期間參加的若干次測試成績中隨機抽取8次,記錄如下:

(Ⅰ)分別估計甲、乙兩名同學在培訓期間所有測試成績的平均分;

(Ⅱ)從上圖中甲、乙兩名同學高于85分的成績中各選一個成績作為參考,求甲、乙兩人成績都在90分以上的概率;

(Ⅲ)現(xiàn)要從甲、乙中選派一人參加正式比賽,根據(jù)所抽取的兩組數(shù)據(jù)分析,你認為選派哪位同學參加較為合適?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題 “存在”,命題“曲線表示焦點在軸上的橢圓”,命題 曲線表示雙曲線”

1若“”是真命題,求實數(shù)的取值范圍;

2的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設圓的圓心為A,直線l過點B(1,0)且與x軸不重合,l交圓AC,D兩點,過BAC的平行線交AD于點E.

I)證明為定值,并寫出點E的軌跡方程;

II)設點E的軌跡為曲線C1,直線lC1M,N兩點,過B且與l垂直的直線與圓A交于P,Q兩點,求四邊形MPNQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)當時,求函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.

(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;

(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實數(shù)的取值范圍;

(3)若為定義域上的“局部奇函數(shù)”,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是方程的兩根,數(shù)列是遞增的等差數(shù)列,數(shù)列的前項和為,且.

1)求數(shù)列的通項公式;

2)記,求數(shù)列的前.

查看答案和解析>>

同步練習冊答案