計算:log (2+
3
)
(2-
3
)=
 
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由2-
3
=
1
2+
3
,結(jié)合對數(shù)的運算性質(zhì)loga
1
a
=-1,可得log (2+
3
)
(2-
3
)=log (2+
3
)
1
2+
3
的值.
解答: 解:∵2-
3
=
1
2+
3
,
∴l(xiāng)og (2+
3
)
(2-
3
)=log (2+
3
)
1
2+
3
=-1.
故答案為:-1
點評:本題考查的知識點是對數(shù)的運算性質(zhì),熟練掌握對數(shù)的運算性質(zhì)是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,則
sinα-4cosα
5sinα+2cosα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個內(nèi)角分別為A、B、C,且滿足2sin2(A+C)=
3
sin2B和4sin2
B+C
2
-cos2A=
7
2

(1)試判斷△ABC的形狀;
(2)已知函數(shù)f(x)=sinx-
3
cosx(x∈R),求f(A=45°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在矩形ABCD中,AB=4,BC=3,點P在平面ABC外,且PD⊥平面ABCD,PD=
9
5
,求點P到直線AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},an=23n-1,求前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

使
1-cosα
1+cosα
=
cosα-1
sinα
成立的α范圍( 。
A、{x|2kπ-π<α<2kπ,k∈Z}
B、{x|2kπ-π≤α≤2kπ,k∈Z}
C、{x|2kπ+π<α<2kπ+
2
,k∈Z}
D、只能是第三或第四象限的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
3xy2
xy-1
xy
•(xy)-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式0<log2(-b+2)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a>0,c>0,a、b、c為常數(shù))的圖象過點(c,0),當(dāng)0<x<c時,函數(shù)值均大于0.若c=2,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案