設(shè)定義域?yàn)镽的函數(shù)f(x)=,若關(guān)于x的方程2f2(x)-(2a+3)f(x)+3a=0有五個(gè)不同的實(shí)數(shù)解,則符合題意的a的取值范圍是   
【答案】分析:程2f2(x)-(2a+3)f(x)+3a=0有五個(gè)不同的實(shí)數(shù)解x,即要求f(x)=常數(shù)有3個(gè)不同的f(x),根據(jù)題意,先做出函數(shù)f(x)的圖象,結(jié)合圖象可知,只有當(dāng)f(x)=a時(shí),有3個(gè)根,再結(jié)合方程2f2(x)-(2a+3)f(x)+3a=0有2個(gè)不同的實(shí)數(shù)解,可求
解答:解:方程2f2(x)-(2a+3)f(x)+3a=0有五個(gè)不同的實(shí)數(shù)解,
解:∵題中原方程2f2(x)-(2a+3)f(x)+3a=0有且只有5個(gè)不同實(shí)數(shù)解,
∴即要求對(duì)應(yīng)于f(x)等于某個(gè)常數(shù)有3個(gè)不同實(shí)數(shù)解,
∴故先根據(jù)題意作出f(x)的簡(jiǎn)圖:
由圖可知,只有當(dāng)f(x)=a時(shí),它有三個(gè)根.
所以有:1<a<2 ①.
再根據(jù)2f2(x)-(2a+3)f(x)+3a=0有兩個(gè)不等實(shí)根,
得:△=(2a+3)2-4×2×3a>0⇒
結(jié)合①②得:1<a<a<2.
故答案為:1<a<a<2.

點(diǎn)評(píng):本題考查了函數(shù)的圖象與一元二次方程根的分布的知識(shí),采用數(shù)形結(jié)合的方法解決.?dāng)?shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問(wèn)題的本質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義域?yàn)镽的函數(shù)f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若關(guān)于x的方程f2(x)-(2m+1)f(x)+m2=0有7個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義域?yàn)镽的函數(shù)f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若關(guān)于x的方程f2(x)-(2m+1)f(x)+m2=0有5個(gè)不同的實(shí)數(shù)解,則m=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義域?yàn)镽的函數(shù)f(x)=
-2x+a2x+1+b
(a,b為實(shí)數(shù))若f(x)是奇函數(shù).
(1)求a與b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并證明;
(3)證明對(duì)任何實(shí)數(shù)x、c都有f(x)<c2-3c+3成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義域?yàn)镽的函數(shù)f(x)=
|lg|x-1||,x≠1
0,          x=1
,則關(guān)于x的方程f2(x)+bf(x)+c=0有7個(gè)不同實(shí)數(shù)解的充要條件是 (  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義域?yàn)镽的函數(shù)f(x)=
4
|x-1
(x≠1)
2
 (x=1)
,若關(guān)于x的方程f2(x)+bf(x)+c=0有三個(gè)不同的實(shí)數(shù)解x1、x2、x3,則x12+x22|x32等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案