精英家教網 > 高中數學 > 題目詳情

紅隊隊員甲、乙、丙與藍隊隊員A、B、C進行圍棋比賽,甲對A,乙對B,丙對C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設各盤比賽結果相互獨立.

(Ⅰ)求紅隊至少兩名隊員獲勝的概率;

(Ⅱ)用ξ表示紅隊隊員獲勝的總盤數,求ξ的分布列和數學期望Eξ.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

紅隊隊員甲、乙、丙與藍隊隊員A、B、C進行圍棋比賽,甲對A,乙對B,丙對C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設各盤比賽結果相互獨立.
(Ⅰ)求紅隊至少兩名隊員獲勝的概率;
(Ⅱ)用ξ表示紅隊隊員獲勝的總盤數,求ξ的分布列和數學期望Eξ.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•甘谷縣模擬)(文)紅隊隊員甲、乙、丙與藍隊隊員A、B、C進行圍棋比賽,甲對A,乙對B,丙對C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設各盤比賽結果相互獨立.求紅隊至少兩名隊員獲勝的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

紅隊隊員甲、乙、丙與藍隊隊員A、B、C進行圍棋比賽,甲對A,乙對B,丙對C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設各盤比賽結果相互獨立。

(Ⅰ)求紅隊至少兩名隊員獲勝的概率;

(Ⅱ)用表示紅隊隊員獲勝的總盤數,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年甘肅省高三期末考試理科數學 題型:解答題

(本小題滿分12分)紅隊隊員甲、乙、丙與藍隊隊員A、B、C進行圍棋比賽,甲對A,乙對B,丙對C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設各盤比賽結果相互獨立.

(I)求紅隊至少兩名隊員獲勝的概率;

(II)用表示紅隊隊員獲勝的總盤數,求的分布列和數學期望

 

查看答案和解析>>

科目:高中數學 來源:2011年高考試題數學理(山東卷)解析版 題型:解答題

 

    紅隊隊員甲、乙、丙與藍隊隊員A、B、C進行圍棋比賽,甲對A、乙對B、丙對C各一盤。已知甲勝A、乙勝B、丙勝C的概率分別為0.6,0.5,0.5.假設各盤比賽結果相互獨立。

(Ⅰ)求紅隊至少兩名隊員獲勝的概率;

(Ⅱ)用表示紅隊隊員獲勝的總盤數,求的分布列和數學期望。

 

 

查看答案和解析>>

同步練習冊答案