18.已知2sin(π-α)-cos(π-α)=1(0<α<π),求cos(2π-α)+sin(π+α)的值.

分析 直接利用誘導(dǎo)公式化簡已知條件與所求的表達(dá)式,然后求解即可.

解答 解:2sin(π-α)-cos(π-α)=1,
可得2sinα+cosα=1,0<α<π,可得$\frac{π}{2}$<α<π,
又sin2α+cos2α=1,
解得sinα=$\frac{4}{5}$,cosα=$-\frac{3}{5}$,
cos(2π-α)+sin(π+α)=cosα-sinα=$-\frac{3}{5}$$-\frac{4}{5}$=$-\frac{7}{5}$.

點(diǎn)評 本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)的化簡求值,同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知雙曲線的兩個(gè)焦點(diǎn)F1,F(xiàn)2之間的距離為26,雙曲線上一點(diǎn)到兩焦點(diǎn)的距離之差的絕對值為24,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.將長為10米的鐵絲折成矩形,求矩形的面積y關(guān)于其中一邊長x的解析式,并寫出此函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.寫出下列函數(shù)的值域:
(1)y=x+$\frac{1}{x-1}$(x>1);
(2)y=2x+$\frac{1}{x-1}$(x>1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.把下列各角的度數(shù)化為弧度數(shù),并寫成0到2π的角加上2kπ(k∈Z)的形式:
(1)-64°;
(2)400°;
(3)-722°30′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知(sinα+1)(1+cosα)=0,求sinα+cosα,sinα•cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.當(dāng)x<0時(shí),指數(shù)函數(shù)y=(a2-1)x的值總大于1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.下列算法中,若輸入n=10,則將輸出A=3.
第一步,給定一個(gè)正整數(shù)n.
第二步,令A(yù)=3,k=1.
第三步,判斷k<n是否成立,若是,則執(zhí)行第四步;否則,執(zhí)行第六步.
第四步,令B=$\frac{1}{1-A}$.
第五步,將B的值賦給A,并將k的值增加1仍用k表示,然后返回執(zhí)行第三步.
第六步,輸出A.算法結(jié)束.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在y軸上截距是-2,斜率為3的直線方程是3x-y-2=0.

查看答案和解析>>

同步練習(xí)冊答案