【題目】已知橢圓的離心率,是橢圓上一點.
(1)求橢圓的方程;
(2)若直線的斜率為,且直線交橢圓于、兩點,點關(guān)于原點的對稱點為,點是橢圓上一點,判斷直線與的斜率之和是否為定值,如果是,請求出此定值,如果不是,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)[選修4-4,極坐標(biāo)與參數(shù)方程選講]
在直角坐標(biāo)系x0y中,曲線C1的參數(shù)方程為(為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為p=4sin9
(1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)已知曲線C3的極坐標(biāo)方程為=α,(0<α<x,p∈R),點A是曲線C3與C1的交點,點B是曲線C3與C2的交點,且A,B均異于原點O,且|AB|=4,求實數(shù)α的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻(xiàn),這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期,某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,∠BAC=120°,AC=AB=2,AA1=3.
(1)求三棱柱ABC-A1B1C1的體積;
(2)若M是棱BC的一個靠近點C的三等分點,求二面角A-A1M-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓A:(x+1)2+y2=16,圓C過點B(1,0)且與圓A相切,設(shè)圓心C的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過點B作兩條互相垂直的直線l1,l2,直線l1與E交于M,N兩點,直線l2與圓A交于P,Q兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點的序列,其中.(是線段的中點,是線段的中點,……,是線段的中點,…)
(1)寫出與之間的關(guān)系;
(2)設(shè),計算,由此推測數(shù)列的通項公式,并且加以證明;
(3)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1直角梯形,,,,,為的中點,沿將梯形折起(如圖2),使平面平面.
(1)證明平面;
(2)在線段上是否存在點,使得平面與平面所成的銳二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人做下面的游戲:有一個由兩個同軸圓柱組成的有蓋容器,如圖,里面的實心圓柱底面半徑為,外面的圓柱面的底面半徑為,容器的高為。在容器內(nèi)放入個半徑為且質(zhì)地相同的小球,其中紅、黃、藍(lán)色各個,隨意翻動容器,然后將容器直立在桌面上。當(dāng)小球全部停止后,如果有兩個顏色相同的小球相鄰,則甲勝,否則乙勝。那么,甲勝的概率為()。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com