函數(shù)y=log
1
2
(x2+4x-12)
的單調(diào)遞增區(qū)間是______.
根據(jù)對數(shù)函數(shù)的定義可得:函數(shù)y=log
1
2
(x2+4x-12)
的定義域?yàn)椋海?∞,-6)∪(2,+∞)
令t=x2+4x-12,則y=log
1
2
t
,
由對數(shù)函數(shù)的性質(zhì)可得:函數(shù)y=log
1
2
t
在定義域內(nèi)是減函數(shù),
由二次函數(shù)的性質(zhì)可得:t=x2+4x-12的單調(diào)遞減區(qū)間是(-∞,-6),單調(diào)遞增區(qū)間是(2,+∞),
再根據(jù)復(fù)合函數(shù)的單調(diào)性是“同增異減”,
所以函數(shù)log
1
2
(x2+4x-12)
的單調(diào)遞增區(qū)間是(-∞,-6).
故答案為:(-∞,-6).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log
12
(x2+2x-3)
的單調(diào)增區(qū)間為
(-∞,-3)
(-∞,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=log
12
(x2+ax+3-2a)
在(1,+∞)上單調(diào)遞減,則a的取值范圍是
[-2,4]
[-2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中是真命題的為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
log
1
2
(2x-1)
的定義域?yàn)?!--BA-->
1
2
,1]
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log
1
2
(cos2x-sin2x)
的單調(diào)遞增區(qū)間是(  )

查看答案和解析>>

同步練習(xí)冊答案