直線l與拋物線交于兩點(diǎn)A、B,O為坐標(biāo)原點(diǎn),且

(1)求證:直線l恒過(guò)一定點(diǎn);

(2)若,求直線l的斜率k的取值范圍;

(3)設(shè)拋物線的焦點(diǎn)為F,,試問(wèn)角能否等于120°?若能,求出相應(yīng)的直線l的方程;若不能,請(qǐng)說(shuō)明理由.

解:(1)若直線lx軸不垂直,設(shè)其方程為,l與拋物線的交點(diǎn)坐標(biāo)分別為、,由,即,

又由.

,則直線l的方程為,

則直線l過(guò)定點(diǎn)(2,0).

若直線lx軸垂直,易得 l的方程為x=2,

l也過(guò)定點(diǎn)(2,0).  綜上,直線l恒過(guò)定點(diǎn)(2,0).

(2)由(1)得,可得 解得k的取值范圍是

(3)假定,則有,如圖,即

由(1)得. 由定義得 從而有

均代入(*)得

,即這與相矛盾.

經(jīng)檢驗(yàn),當(dāng)軸時(shí),. 故

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn)O,焦點(diǎn)F在x軸正半軸上,傾斜角為銳角的直線l過(guò)F點(diǎn),設(shè)直線l與拋物線交于A、B兩點(diǎn),與拋物線的準(zhǔn)線交于M點(diǎn),
MF
FB
(λ>0)
(1)若λ=1,求直線l斜率
(2)若點(diǎn)A、B在x軸上的射影分別為A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差數(shù)列求λ的值
(3)設(shè)已知拋物線為C1:y2=x,將其繞頂點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°變成C1′.圓C2:x2+(y-4)2=1的圓心為點(diǎn)N.已知點(diǎn)P是拋物線C1′上一點(diǎn)(異于原點(diǎn)),過(guò)點(diǎn)P作圓C2的兩條切線,交拋物線C′1于T,S,兩點(diǎn),若過(guò)N,P兩點(diǎn)的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:陜西省西安八校2012屆高三上學(xué)期期中聯(lián)考數(shù)學(xué)理科試題 題型:044

已知拋物線C的焦點(diǎn)F在y軸上,拋物線上一點(diǎn)P(a,4)到其準(zhǔn)線的距離為5,過(guò)點(diǎn)F的直線l與拋物線交于A、B兩點(diǎn),過(guò)點(diǎn)A、B作拋物線C的切線,設(shè)這兩條切線的交點(diǎn)為T(mén).

(Ⅰ)求拋物線C的標(biāo)準(zhǔn)方程;

(Ⅱ)求的值;

(Ⅲ)求證:的等比中項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都七中高二(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn)O,焦點(diǎn)F在x軸正半軸上,傾斜角為銳角的直線l過(guò)F點(diǎn),設(shè)直線l與拋物線交于A、B兩點(diǎn),與拋物線的準(zhǔn)線交于M點(diǎn),(λ>0)
(1)若λ=1,求直線l斜率
(2)若點(diǎn)A、B在x軸上的射影分別為A1,B1且||,||,2||成等差數(shù)列求λ的值
(3)設(shè)已知拋物線為C1:y2=x,將其繞頂點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°變成C1.圓C2:x2+(y-4)=1的圓心為點(diǎn)N.已知點(diǎn)P是拋物線C1上一點(diǎn)(異于原點(diǎn)),過(guò)點(diǎn)P作圓C2的兩條切線,交拋物線C1于T,S,兩點(diǎn),若過(guò)N,P兩點(diǎn)的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年廣東省廣州市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓C1的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為F1(-2,0),F(xiàn)2(2,0),點(diǎn)A(2,3)在橢圓C1上,過(guò)點(diǎn)A的直線L與拋物線交于B、C兩點(diǎn),拋物線C2在點(diǎn)B,C處的切線分別為l1,l2,且l1與l2交于點(diǎn)P.
(1)求橢圓C1的方程;
(2)是否存在滿(mǎn)足|PF1|+|PF2|=|AF1|+|AF2|的點(diǎn)P?若存在,指出這樣的點(diǎn)P有幾個(gè)(不必求出點(diǎn)P的坐標(biāo));若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年廣東省廣州市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知橢圓C1的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為F1(-2,0),F(xiàn)2(2,0),點(diǎn)A(2,3)在橢圓C1上,過(guò)點(diǎn)A的直線L與拋物線交于B、C兩點(diǎn),拋物線C2在點(diǎn)B,C處的切線分別為l1,l2,且l1與l2交于點(diǎn)P.
(1)求橢圓C1的方程;
(2)是否存在滿(mǎn)足|PF1|+|PF2|=|AF1|+|AF2|的點(diǎn)P?若存在,指出這樣的點(diǎn)P有幾個(gè)(不必求出點(diǎn)P的坐標(biāo));若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案