已知函數(shù).
(1)若p=2,求曲線處的切線方程;
(2)若函數(shù)在其定義域內(nèi)是增函數(shù),求正實數(shù)p的取值范圍;
(3)設函數(shù),若在[1,e]上至少存在一點,使得成立,求實數(shù)p的取值范圍.

(1)(2)(3)

解析試題分析:(1)根據(jù)題意,由于函數(shù)函數(shù).
,那么可知,切線方程為:
(2)由于函數(shù)函數(shù)在其定義域內(nèi)是增函數(shù),可知導數(shù)恒大于等于零,即可知
由題意:故p的取值范圍是
(3) 由于函數(shù),若在[1,e]上至少存在一點,使得成立,只要函數(shù)的最小值大于等于函數(shù)f(x)的最小值即可,即可得
考點:導數(shù)的運用
點評:主要是考查了導數(shù)的判定單調(diào)性以及導數(shù)求解最值的運用,屬于基礎(chǔ)題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,求的單調(diào)區(qū)間;
(2)若函數(shù)上無零點,求的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)).
(1)當時,求證:上單調(diào)遞增;
(2)當時,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)直線為曲線的切線,且經(jīng)過原點,求直線的方程及切點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設定函數(shù) (>0),且方程的兩個根分別為1,4。
(Ⅰ)當=3且曲線過原點時,求的解析式;
(Ⅱ)若無極值點,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù);
(1)若上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,求實數(shù)的值;
(2)當時,求證:當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為偶函數(shù),曲線過點(2,5), .
(1)若曲線有斜率為0的切線,求實數(shù)的取值范圍;
(2)若當時函數(shù)取得極值,確定的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知實數(shù),函數(shù)
(Ⅰ)若函數(shù)有極大值32,求實數(shù)的值;
(Ⅱ)若對,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的極值;
(2)當時,求的值域;
(3)設,函數(shù),若對于任意,總存在,使得成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案