精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an}滿足a11an(nN*n≥2),數列{bn}滿足關系式bn(nN*)

(1)求證:數列{bn}為等差數列;

(2)求數列{an}的通項公式.

【答案】(1)見證明;(2) an.

【解析】

(1)通過對an(nN*,n≥2)兩邊同時取倒數、整理得,進而可得數列{bn}是以1為首項,2為公差的等差數列.

(2)通過(1)可知bn2n1,進而求倒數可得結論.

(1)證明:∵bn,且an,

,

.

b11,∴數列{bn}是以1為首項,2為公差的等差數列.

(2)解:由(1)知數列{bn}的通項公式為bn1(n1)×22n1,

bn,∴an.∴數列{an}的通項公式為an.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,點為棱的中點

1)證明:

2)若為棱上一點,滿足,求銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知多面體中,四邊形為菱形,為正四面體,且.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直角三角形ABC的三個頂點都在橢圓上,其中A0,1)為直角頂點.若該三角形的面積的最大值為,則實數a的值為_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對有個元素的總體進行抽樣,先將總體分成兩個子總體是給定的正整數,且),再從每個子總體中各隨機抽取2個元素組成樣本.表示元素同時出現在樣本中的概率.

1)求的表達式(用,表示);

2)求所有的和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】阿基米德是古希臘偉大的哲學家、數學家、物理學家,對幾何學、力學等學科作出過卓越貢獻.為調查中學生對這一偉大科學家的了解程度,某調查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.他們的調查結果如下:

0項

1項

2項

3項

4項

5項

5項以上

理科生(人)

1

10

17

14

14

10

4

文科生(人)

0

8

10

6

3

2

1

(1)完成如下列聯(lián)表,并判斷是否有的把握認為,了解阿基米德與選擇文理科有關?

比較了解

不太了解

合計

理科生

文科生

合計

(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.

(i)求抽取的文科生和理科生的人數;

(ii)從10人的樣本中隨機抽取3人,用表示這3人中文科生的人數,求的分布列和數學期望.

參考數據:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,a,c________.(補充條件)

1)求△ABC的面積;

2)求sinA+B.

從①b4,②cosB,③sinA這三個條件中任選一個,補充在上面問題中并作答.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2020122日,國新辦發(fā)布消息:新型冠狀病毒來源于武漢一家海鮮市場非法銷售的野生動.專家通過全基因組比對發(fā)現此病毒與2003年的非典冠狀病毒以及此后的中東呼吸綜合征冠狀病毒,分別達到70%40%的序列相似性.這種新型冠狀病毒對人們的健康生命帶來了嚴重威脅因此,某生物疫苗研究所加緊對新型冠狀病毒疫苗進行實驗,并將某一型號疫苗用在動物小白鼠身上進行科研和臨床實驗,得到統(tǒng)計數據如下:

未感染病毒

感染病毒

總計

未注射疫苗

20

注射疫苗

30

總計

50

50

100

現從所有試驗小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.

1)求列聯(lián)表中的數據,,,的值;

2)能否有99.9%把握認為注射此種疫苗對預防新型冠狀病毒有效?

附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過點的動直線ly軸交于點,過點T且垂直于l的直線與直線相交于點M.

1)求M的軌跡方程;

2)設M位于第一象限,以AM為直徑的圓y軸相交于點N,且,求的值.

查看答案和解析>>

同步練習冊答案