如圖,AB是⊙O的直徑,PA垂直于⊙O所在平面,C是圓周上不同于A、B的一動(dòng)點(diǎn).

(1)三棱錐P-ABC的四個(gè)面中有幾個(gè)直角三角形?

(2)面PAC與面PBC所成的二面角的大小是否隨動(dòng)點(diǎn)C的運(yùn)動(dòng)變化而變化?說(shuō)明理由.

(3)若D為PB中點(diǎn),如何過(guò)D作面PAC的垂線?說(shuō)明理由.

答案:
解析:

  解:(1)∵PA⊥⊙O所在平面,∴PA⊥AC,PA⊥AB.∴△PAC、△PAB都是直角三角形.又∵AB為直徑,C為圓周角,∴△ACB為直角三角形.又∵BC⊥AC、BC⊥PA,BC⊥平面PAC,∴BC⊥PC.∴△PBC也為直角三角形.因此,三棱錐P-ABC的四個(gè)面中有4個(gè)直角三角形.

  (2)由(1)知BC⊥平面PAC,∴平面PBC⊥平面PAC.

  無(wú)論C點(diǎn)在圓周上任何地方(A、B除外),平面PBC⊥平面PAC.因此,面PAC與面PBC所成的二面角的大小與C的運(yùn)動(dòng)無(wú)關(guān).

  (3)由(1)知面PAC⊥面PBC,又面PAC∩面PBC=PC,且D∈面PBC,

  ∴過(guò)D點(diǎn)作DE⊥PC,E為垂足,則DE⊥面PAC.


提示:

首先根據(jù)線線垂直、線面垂直找到圖中存在的直角三角形.然后用二面角的定義進(jìn)行判斷.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:南充高中2008-2009學(xué)年高二下學(xué)期第四次月考數(shù)學(xué)試題(理) 題型:044

如圖,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點(diǎn)C為圓周上異于A、B的一點(diǎn).

(1)若一個(gè)n面體中有m個(gè)面是直角三角形,則稱(chēng)這個(gè)n面體的直度為.那么四面體P-ABC的直度為多少?說(shuō)明理由;

(2)在四面體P-ABC中,AP=AB=1,設(shè).若動(dòng)點(diǎn)M在四面體P-ABC表面上運(yùn)動(dòng),并且總保持PB⊥AM.設(shè)為動(dòng)點(diǎn)M的軌跡圍成的封閉圖形的面積關(guān)于角的函數(shù),求取最大值時(shí),二面角A-PB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省南充高中2008-2009學(xué)年高二下學(xué)期第四次月考數(shù)學(xué)文 題型:044

如圖,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點(diǎn)C為圓周上異于AB的一點(diǎn).

(1)若一個(gè)n面體中有m個(gè)面是直角三角形,則稱(chēng)這個(gè)n面體的直度為.那么四面體P-ABC的直度為多少?說(shuō)明理由;

(2)如圖,若四面體P-ABC中,AP=AB=1,AE⊥PB,垂足為E,AF⊥PC,垂足為F.設(shè)∠EAF=為△AEF面積的函數(shù),求取最大值時(shí)二面角A-PB-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD是正方形,E、F分別是AD、BC邊上的點(diǎn),EFABEFAC于點(diǎn)O,以EF為棱把它折成直二面角A-EF-D后,求證:不論EF怎樣移動(dòng),∠AOC是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省南充高中08-09學(xué)年高二下學(xué)期第四次月考(理) 題型:解答題

 如圖甲,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點(diǎn)C為圓周上異于A、B的一點(diǎn).

(1)若一個(gè)面體中有個(gè)面是直角三角形,則稱(chēng)這個(gè)面體的直度為.那么四面體的直度為多少?說(shuō)明理由;

(2)在四面體中,,設(shè).若動(dòng)點(diǎn)在四面體 表面上運(yùn)動(dòng),并且總保持.設(shè)為動(dòng)點(diǎn)的軌跡圍成的封閉圖形的面積關(guān)于角的函數(shù),求取最大值時(shí),二面角的正切值.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案