已知四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AD=1,AB=2,E、F分別是AB、PD的中點.
(1)求證:AF∥平面PEC;
(2)求PC與平面ABCD所成角的大小;
(3)求二面角P-EC-D的大。
【答案】分析:(1)取PC的中點H,連接FH,EH,證明四邊形AEHF是平行四邊形,然后利用直線與平面平行的判定定理證明AF∥平面PEC;
(2)連接AC,說明PC與平面ABCD所成的角的大小,就是∠PCA;在Rt△PAC中,求PC與平面ABCD所成的角的大小;
(3)延長CE至O,使得AO⊥CE于O,連接PO,說明∠POA就是二面角P-EC-D的大小,利用三角形相似,求出AO,在Rt△PAO中,求出二面角P-EC-D的大。
解答:解:(1)取PC的中點H,連接FH,EH,
因為E、F分別是AB、PD的中點.
所以FH∥DC,F(xiàn)H=DC,又AB∥DC,
∴FH∥AE,并且FH=AE.
∴四邊形AEHF是平行四邊形,
∴AF∥EH,∵EH?平面PEC,AF?平面PEC,
所以AF∥平面PEC;
(2)連接AC,因為PA⊥平面ABCD,
所以PC與平面ABCD所成的角的大小,就是∠PCA;
因為底面ABCD是矩形,PA=AD=1,AB=2,
所以AC==
在Rt△PAC中∴tan∠PCA==,
∠PCA=arctan
(3)延長CE至O,使得AO⊥CE于O,
連接PO,因為PA⊥平面ABCD,
所以∠POA就是二面角P-EC-D的大小,
在Rt△AOE與Rt△EBC中,易得
Rt△AOE∽Rt△EBC,
所以,EC=
所以AO===,
在Rt△PAO中,tan∠POA===,
所以所求的二面角P-EC-D的大小為:arctan
點評:本題是中檔題,考查直線與平面的平行,直線與平面所成的角的大小,二面角的大小的求法,正確作出有關(guān)的角是解題的關(guān)鍵,考查定理的應(yīng)用,空間想象能力,計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點,F(xiàn)為AD的中點.
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點M是四邊形ABCD內(nèi)的一動點,PM與平面ABCD所成的角始終為45°,求動直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,側(cè)面PBC⊥底面ABCD,O是BC的中點.
(1)求證:PO⊥平面ABCD;
(2)求證:PA⊥BD
(3)若二面角D-PA-O的余弦值為
10
5
,求PB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E為BC中點,AE與BD交于O點,AB=BC=2CD=2,BD⊥PE.
(1)求證:平面PAE⊥平面ABCD; 
(2)若直線PA與平面ABCD所成角的正切值為
5
2
,PO=2,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是線段PC上一點,PC⊥平面BDE.
(Ⅰ)求證:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直線AC與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省濟(jì)寧一中高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點,F(xiàn)為AD的中點.
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點M是四邊形ABCD內(nèi)的一動點,PM與平面ABCD所成的角始終為45°,求動直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

同步練習(xí)冊答案