精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知四棱錐的底面為等腰梯形, , ,垂足為, 是四棱錐的高。

)證明:平面 平面;

)若,60°,求四棱錐的體積。

【答案】(1)PH是四棱錐P-ABCD的高,得到ACPH,ACBD,推出AC平面PBD.

故平面PAC平面PBD.

(2)

【解析】試題分析:(1)因為PH是四棱錐P-ABCD的高。

所以ACPH,ACBD,PH,BD都在平面PHD,PHBD=H.

所以AC平面PBD.

故平面PAC平面PBD.

(2)因為ABCD為等腰梯形,ABCD,ACBD,AB=.

所以HA=HB=.

因為APB=ADR=600

所以PA=PB=,HD=HC=1.

可得PH=.

等腰梯形ABCD的面積為S=AC x BD = 2+.

所以四棱錐的體積為V=x2+x=

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)設函數,試討論函數的單調性;

(Ⅱ)設函數 ,求函數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線,則下列結論正確的是( )

A. 上所有的點向右平移個單位長度,再把所有圖象上各點的橫坐標縮短到原來的倍(縱坐標不變),得到曲線

B. 上所有點向左平移個單位長度,再把所得圖象上各點的橫坐標伸長到原來的3倍(縱坐標不變),得到曲線

C. 上各點的橫坐標縮短到原來的倍(縱坐標不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線

D. 上各點的橫坐標伸長到原來的3倍(縱坐標不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在梯形中, , .將沿折起至,使得平面平面(如圖2), 為線段上一點.

圖1 圖2

(Ⅰ)求證: ;

(Ⅱ)若為線段中點,求多面體與多面體的體積之比;

(Ⅲ)是否存在一點,使得平面?若存在,求的長.若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且過點

1)求橢圓的方程;

2)過橢圓左焦點的直線與橢圓交于兩點,直線過坐標原點且直線的斜率互為相反數,直線與橢圓交于兩點且均不與點重合,設直線的斜率為,直線的斜率為.證明 為定值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】石嘴山市第三中學高三年級統(tǒng)計學生的最近20次數學周測成績,現有甲、乙兩位同學的20次成績如莖葉圖所示:

(1)根據莖葉圖求甲、乙兩位同學成績的中位數,并將同學乙的成績的頻率分布直方圖填充完整;

(2)現從甲、乙兩位同學的不低于140分的成績中任意選出2個成績,記事件為“其中2個成績分別屬于不同的同學”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點,圓,過點的動直線與圓交于兩點,線段的中點為,為坐標原點.

(Ⅰ)求的軌跡方程;

(Ⅱ)當不重合)時,求的方程及的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是奇函數,是偶函數,且其中.

1)求的表達式,并求函數的值域

2)若關于的方程在區(qū)間內恰有兩個不等實根,求常數的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將直線2xyλ=0沿x軸向左平移1個單位,所得直線與圓x2y2+2x-4y=0相切,則實數λ的值為(  )

A.-3或7B.-2或8

C.0或10D.1或11

查看答案和解析>>

同步練習冊答案