【題目】已知函數(shù).

1當(dāng)時(shí),求的單調(diào)區(qū)間;

2設(shè),是曲線圖象上的兩個(gè)相異的點(diǎn),若直線的斜率恒成立,求實(shí)數(shù)的取值范圍.

3設(shè)函數(shù)有兩個(gè)極值點(diǎn),,若恒成立,求實(shí)數(shù)的取值范圍.

【答案】1 的單調(diào)增區(qū)間為;單調(diào)減區(qū)間為;

2;

3.

【解析】

試題分析:1當(dāng)時(shí),,分別解不等式可得函數(shù)的單調(diào)遞增區(qū)間與遞減區(qū)間;

2上單調(diào)遞增,由恒成立,求的范圍即可;3是方程可得,,用表示,令,則,構(gòu)造函數(shù),求的導(dǎo)數(shù),研究其單調(diào)性得上單減,,可求得.

試題解析: 1 ,

,的單調(diào)增區(qū)間為;單調(diào)減區(qū)間為.

2 ,所以,令,上單調(diào)遞增,對(duì)恒成立,對(duì)恒成立,又,當(dāng)時(shí)取等號(hào),,故.

3,因?yàn)楹瘮?shù)有兩個(gè)極值點(diǎn),所以是方程的兩個(gè)根,即,所以是方程的兩個(gè)根,

所以有,

,則,設(shè),

,

上單減,,故.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列4個(gè)命題:

①為了了解800名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見(jiàn),打算從中抽取一個(gè)容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔為40;

②四邊形為長(zhǎng)方形,,中點(diǎn),在長(zhǎng)方形內(nèi)隨機(jī)取一點(diǎn),取得的點(diǎn)到的距離大于1的概率為;

③把函數(shù)的圖象向右平移個(gè)單位,可得到的圖象;

④已知回歸直線的斜率的估計(jì)值為,樣本點(diǎn)的中心為,則回歸直線方程為.

其中正確的命題有__________.(填上所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1若函數(shù)上是增函數(shù),求實(shí)數(shù)的取值范圍;

(2求所有的實(shí)數(shù),使得對(duì)任意時(shí),函數(shù)的圖象恒在函數(shù)圖象的下方;

(3若存在,使得關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)求證: ;

(3)求證:當(dāng)時(shí), , 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,右焦點(diǎn)為,點(diǎn)分別是該橢圓的上、下頂點(diǎn),點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(與軸交點(diǎn)除外),直線交橢圓于另一點(diǎn),記直線, 的斜率分別為

(1)當(dāng)直線過(guò)點(diǎn)時(shí),求的值;

(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2當(dāng)時(shí),方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線圖.

(Ⅰ)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

(Ⅱ)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量.

參考數(shù)據(jù): , ,

參考公式:相關(guān)系數(shù)

回歸方程, ,

本題中斜率和截距的最小二乘估計(jì)公式分別為: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1在,,、分別為線段、的中點(diǎn),,為折痕,折起到圖2的位置,使平面⊥平面連接,,設(shè)是線段上的動(dòng)點(diǎn),滿足

(1)證明:平面⊥平面

(2)若二面角的大小為,的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線方程為點(diǎn)拋物線到直線距離最小點(diǎn),點(diǎn)拋物線上異于點(diǎn)點(diǎn),直線直線于點(diǎn),過(guò)點(diǎn)平行的直線與拋物線于點(diǎn).

點(diǎn)坐標(biāo);

)證明直線過(guò)定點(diǎn),并求這個(gè)定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案